FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
基本信息
- 批准号:1952366
- 负责人:
- 金额:$ 11.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Algebraic Geometry studies algebraic varieties which are geometric objects defined by polynomial equations. One of the most natural problems in this area is to understand the singularities that naturally occur when considering algebraic varieties and how these singularities influence the global geometry of algebraic varieties. In recent years there have been a number of breakthroughs, especially in the case where we consider solutions over the complex numbers. At the same time new techniques and approaches have emerged for studying solutions in positive and mixed characteristics. The primary goal of this collaborative project is to advance and unify these ideas to further understand and solve some of the most challenging programs in both local and global algebraic geometry. In addition the project provides research training opportunities for graduate students. The PIs will investigate singularities in positive and mixed characteristics by using a variety of techniques including those arising from the minimal model program, from the theory of F-singularities, and from Scholze's work on perfectoid algebras and spaces. The PIs will also organize workshops, a summer school and a conference, aimed at training young researchers in this area, disseminating recent results and facilitating further advances and breakthroughs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数几何研究由多项式方程定义的几何对象的代数变体。这一领域最自然的问题之一是理解在考虑代数簇时自然出现的奇点,以及这些奇点如何影响代数簇的整体几何。近年来,已经有了一些突破,特别是在我们考虑复数的解决方案的情况下。与此同时,出现了研究具有正性和混合性的解决方案的新技术和新方法。这个合作项目的主要目标是推进和统一这些想法,以进一步了解和解决局部和全局代数几何中一些最具挑战性的程序。此外,该项目还为研究生提供了研究培训机会。PI将通过使用各种技术来研究正特征和混合特征中的奇点,这些技术包括最小模型程序、F-奇点理论以及肖尔茨关于完美拟态代数和空间的工作。PIS还将组织研讨会、暑期学校和会议,旨在培训这一领域的年轻研究人员,传播最新成果,促进进一步的进步和突破。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Koszul and local cohomology, and a question of Dutta
Koszul 和局部上同调,以及 Dutta 问题
- DOI:10.1007/s00209-020-02619-0
- 发表时间:2021
- 期刊:
- 影响因子:0.8
- 作者:Ma, Linquan;Singh, Anurag K.;Walther, Uli
- 通讯作者:Walther, Uli
Maximal Cohen-Macaulay complexes and their uses: A partial survey
最大科恩-麦考利复合体及其用途:部分调查
- DOI:10.1007/978-3-030-89694-2_15
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Iyengar, Srikanth B.
- 通讯作者:Iyengar, Srikanth B.
An analogue of adjoint ideals and PLT singularities in mixed characteristic
混合特征中伴随理想和PLT奇点的类比
- DOI:10.1090/jag/797
- 发表时间:2022
- 期刊:
- 影响因子:1.8
- 作者:Ma, Linquan;Schwede, Karl;Tucker, Kevin;Waldron, Joe;Witaszek, Jakub
- 通讯作者:Witaszek, Jakub
A Buchsbaum theory for tight closure
紧密闭合的布克斯鲍姆理论
- DOI:10.1090/tran/8762
- 发表时间:2022
- 期刊:
- 影响因子:1.3
- 作者:Ma, Linquan;Quy, Pham
- 通讯作者:Quy, Pham
F-Stable Secondary Representations and Deformation of F-Injectivity
F-稳定二次表示和 F-注入性变形
- DOI:10.1007/s40306-021-00415-4
- 发表时间:2022
- 期刊:
- 影响因子:0.5
- 作者:De Stefani, Alessandro;Ma, Linquan
- 通讯作者:Ma, Linquan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Linquan Ma其他文献
The category of F-modules has finite global dimension
F 模块的类别具有有限的全局维度
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Linquan Ma - 通讯作者:
Linquan Ma
$$F$$ -injectivity and Buchsbaum singularities
- DOI:
10.1007/s00208-014-1098-3 - 发表时间:
2014-09-23 - 期刊:
- 影响因子:1.400
- 作者:
Linquan Ma - 通讯作者:
Linquan Ma
The dualizing complex of F-injective and Du Bois singularities
F-内射和杜波依斯奇点的对偶复形
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0.8
- 作者:
B. Bhatt;Linquan Ma;Karl Schwede - 通讯作者:
Karl Schwede
Ascending chain for F -pure thresholds on a fixed strongly F -regular germ.
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Linquan Ma - 通讯作者:
Linquan Ma
Cohomologically Full Rings
上同调满环
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1
- 作者:
Hailong Dao;Alessandro De Stefani;Linquan Ma - 通讯作者:
Linquan Ma
Linquan Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Linquan Ma', 18)}}的其他基金
Measuring singularities in commutative algebra
测量交换代数中的奇点
- 批准号:
2302430 - 财政年份:2023
- 资助金额:
$ 11.86万 - 项目类别:
Continuing Grant
Singularities and Multiplicities in Commutative Algebra
交换代数中的奇异性和多重性
- 批准号:
1901672 - 财政年份:2019
- 资助金额:
$ 11.86万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 11.86万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 11.86万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 11.86万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 11.86万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 11.86万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 11.86万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 11.86万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 11.86万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 11.86万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 11.86万 - 项目类别:
Continuing Grant