Measuring singularities in commutative algebra

测量交换代数中的奇点

基本信息

  • 批准号:
    2302430
  • 负责人:
  • 金额:
    $ 42.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2028-07-31
  • 项目状态:
    未结题

项目摘要

This project involves questions in the theory of commutative algebra. This is a field that deals with the local properties of algebraic varieties, i.e., the solution set of a system of polynomial equations in several variables. For example, the solution set of a single polynomial equation in two variables can be realized as a curve in the plane (e.g., a parabola y=x^2). The singular or non-smooth points of an algebraic variety have rich algebraic and geometric structures, and detailing their properties is crucial in many investigations. For example, the parabola is nonsingular (meaning that locally it looks like a line), while the curve defined by y^2=x^3 is nonsingular except at the origin, where it locally looks like a cusp. The projects that will be explored are focused on the singular points of algebraic varieties (i.e., singularities), with a focus on measuring singularities using various algebraic techniques. The PI will involve his graduate students and post-docs in this research project.The PI will construct a mixed characteristic singularity theory in collaboration with other experts in this area. One focus is to develop a mixed characteristic version of test ideals. Projects include studying their behaviors under localization and completion, and their connections to multiplier ideals from birational geometry. Another focus is on perfectoid signature and perfectoid Hilbert-Kunz multiplicity, which are defined using the perfectoidization functor of Bhatt-Scholze and are inspired by F-signature and Hilbert-Kunz multiplicity from positive characteristic. Projects include understanding the behavior of these numerical invariants under localization and in families. The PI will also continue the study on Hilbert-Samuel multiplicities, with a focus on the longstanding Lech's conjecture. The proposed projects include attacking the three dimensional mixed characteristic case, and exploring the existence of lim Ulrich sequences beyond the graded case. The PI will also investigate the existence of lim Cohen-Macaulay sequences and their variations to attack the longstanding Serre's conjecture on intersection multiplicities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目涉及交换代数理论中的问题。这是一个处理代数簇的局部性质的领域,即,多元多项式方程组的解。例如,两个变量中的单个多项式方程的解集可以被实现为平面中的曲线(例如,抛物线y=x^2)。代数簇的奇异点或非光滑点具有丰富的代数和几何结构,详细描述它们的性质在许多研究中至关重要。例如,抛物线是非奇异的(这意味着它在局部看起来像一条直线),而由y^2=x^3定义的曲线除了在原点处是非奇异的,在原点处它局部看起来像一个尖点。将探索的项目集中在代数簇的奇点(即,奇点),重点是使用各种代数技术测量奇点。PI将邀请他的研究生和博士后参与这项研究项目,PI将与该领域的其他专家合作,构建一个混合特征奇点理论。一个重点是开发测试理想的混合特性版本。项目包括研究它们在局部化和完备化下的行为,以及它们与双有理几何中的乘子理想的联系。另一个重点是完全拟签名和完全拟Hilbert-Kunz重数,它们是利用Bhatt-Scholze的完全化函子定义的,并受到F-签名和Hilbert-Kunz重数的启发。项目包括理解这些数值不变量在本地化和族中的行为。PI还将继续对希尔伯特-塞缪尔多重性的研究,重点是长期存在的莱赫猜想。所提出的方案包括攻击三维混合特征情形,以及探索分次情形之外的lim Ulrich序列的存在性。PI还将调查lim Cohen-Macaulay序列的存在及其变化,以攻击长期存在的Serre关于交叉多重性的猜想。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Linquan Ma其他文献

The category of F-modules has finite global dimension
F 模块的类别具有有限的全局维度
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Linquan Ma
  • 通讯作者:
    Linquan Ma
$$F$$ -injectivity and Buchsbaum singularities
  • DOI:
    10.1007/s00208-014-1098-3
  • 发表时间:
    2014-09-23
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Linquan Ma
  • 通讯作者:
    Linquan Ma
The dualizing complex of F-injective and Du Bois singularities
F-内射和杜波依斯奇点的对偶复形
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    B. Bhatt;Linquan Ma;Karl Schwede
  • 通讯作者:
    Karl Schwede
Ascending chain for F -pure thresholds on a fixed strongly F -regular germ.
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Linquan Ma
  • 通讯作者:
    Linquan Ma
Cohomologically Full Rings
上同调满环

Linquan Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Linquan Ma', 18)}}的其他基金

FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
  • 批准号:
    1952366
  • 财政年份:
    2020
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Continuing Grant
Singularities and Multiplicities in Commutative Algebra
交换代数中的奇异性和多重性
  • 批准号:
    1901672
  • 财政年份:
    2019
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Standard Grant
Studies in Commutative Algebra
交换代数研究
  • 批准号:
    1836867
  • 财政年份:
    2018
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Standard Grant
Studies in Commutative Algebra
交换代数研究
  • 批准号:
    1600198
  • 财政年份:
    2016
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Standard Grant

相似海外基金

Singularities in Positive and Mixed Characteristic Commutative Algebra
正和混合特征交换代数中的奇点
  • 批准号:
    2200716
  • 财政年份:
    2022
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Standard Grant
Commutative Algebra: Extremal Singularities in Prime Characteristic
交换代数:素数特征中的极值奇点
  • 批准号:
    2101075
  • 财政年份:
    2021
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Continuing Grant
A Unified Perspective on Singularities in Commutative Algebra and Algebraic Geometry
交换代数和代数几何奇异性的统一视角
  • 批准号:
    2101800
  • 财政年份:
    2021
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Continuing Grant
Commutative Ring Theory via Resolution of Singularities
通过奇点解析的交换环理论
  • 批准号:
    20K03522
  • 财政年份:
    2020
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Singularities and Multiplicities in Commutative Algebra
交换代数中的奇异性和多重性
  • 批准号:
    1901672
  • 财政年份:
    2019
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Standard Grant
Commutative Algebra: Singularities in All Characteristics with Geometric Applications
交换代数:所有特征中的奇点及其几何应用
  • 批准号:
    1801849
  • 财政年份:
    2018
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Standard Grant
Topics in Commutative Algebra, Singularities, and Valuations
交换代数、奇点和估值主题
  • 批准号:
    1700046
  • 财政年份:
    2017
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Continuing Grant
Studies on singularities using non-commutative resolutions
使用非交换决议研究奇点
  • 批准号:
    17K14159
  • 财政年份:
    2017
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Commutative Ring Theory of Singularities
奇点交换环理论
  • 批准号:
    26400053
  • 财政年份:
    2014
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Commutative Ring Theory of Singularities of Algebraic Varieties
代数簇奇点的交换环理论
  • 批准号:
    23540059
  • 财政年份:
    2011
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了