FRG: Collaborative Research: The Hypoelliptic Laplacian, Noncommutative Geometry, and Applications to Representations and Singular Spaces
FRG:合作研究:亚椭圆拉普拉斯、非交换几何以及在表示和奇异空间中的应用
基本信息
- 批准号:1952551
- 负责人:
- 金额:$ 25.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The collection of frequencies at which a geometric structure resonates is called spectrum of that structure. Encoded in the spectrum is a great deal of information about geometric form, which is difficult to extract. One might ask: How does the sound of a bell determines its shape, or vice versa? A new approach to the problem of relating geometry to the spectrum, based on a concept called the hypoelliptic Laplacian, has shown great promise. The purpose of this project is to build a new theoretical foundation for the hypoelliptic Laplacian, and then develop its applications in harmonic analysis and elsewhere. Expected outcomes will include a clearer and deeper overall understanding of the the hypoelliptic Laplacian, and a broadening of the range of applications to which it may be applied. There will be significant training and mentoring opportunities for graduate students and postdoctoral fellows in geometric and harmonic analysis, distributed across the three sites involved in the project. In more detail, this project will create a foundational theory for Jean-Michel Bismut's hypoelliptic Laplacian as it arises in symmetric and locally symmetric spaces, and elsewhere. For this purpose the investigators will use techniques previously developed in noncommutative geometry, especially the pseudodifferential operator theory originally developed to tackle the local index problem in noncommutative geometry. Turning to applications, in principle the hypoelliptic Laplacian offers a new approach to Harish-Chandra's Plancherel formula for real reductive groups, and an early priority will be to explore this application further. The newly established Mackey bijection in the representation theory of reductive groups (discovered in noncommutative geometry) will be investigated simultaneously. Many other potential applications in noncommutative geometry present themselves, and these will be studied carefully during the course of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何结构共振的频率集合称为该结构的频谱。频谱中编码了大量的几何形状信息,这些信息很难提取。有人可能会问:钟声如何决定它的形状,反之亦然?一种基于亚椭圆拉普拉斯概念的将几何与光谱联系起来的新方法已经显示出巨大的前景。这个项目的目的是为亚椭圆拉普拉斯建立一个新的理论基础,进而发展它在调和分析和其他方面的应用。预期成果将包括对亚椭圆拉普拉斯方程有更清晰和更深入的整体理解,以及扩大其可能适用的应用范围。将为研究生和博士后提供几何和调和分析方面的重要培训和指导机会,分布在参与该项目的三个地点。更详细地说,这个项目将为Jean-Michel Bismut的亚椭圆拉普拉斯建立一个基础理论,因为它出现在对称和局部对称的空间,以及其他地方。为此,研究人员将使用以前在非对易几何中发展起来的技术,特别是伪微分算子理论,最初是为了解决非对易几何中的局部指数问题而开发的。关于应用,原则上,亚椭圆拉普拉斯为实约群的Harish-Chandra的Plancerel公式提供了一种新的方法,早期的优先事项将是进一步探索这一应用。我们将同时研究约化群表示理论中新建立的Mackey双射(发现于非对易几何中)。非对易几何中的许多其他潜在应用也出现了,这些将在项目过程中被仔细研究。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An index theorem for higher orbital integrals
- DOI:10.1007/s00208-021-02233-3
- 发表时间:2021-07
- 期刊:
- 影响因子:1.4
- 作者:P. Hochs;Yanli Song;Xiang Tang
- 通讯作者:P. Hochs;Yanli Song;Xiang Tang
Perturbations of principal submodules in the Drury–Arveson space
- DOI:10.4171/jncg/469
- 发表时间:2020-11
- 期刊:
- 影响因子:0.9
- 作者:M. Jabbari;Xiang Tang
- 通讯作者:M. Jabbari;Xiang Tang
On the Hochschild homology of proper Lie groupoids
论真李群胚的 Hochschild 同调
- DOI:10.4171/jncg/467
- 发表时间:2023
- 期刊:
- 影响因子:0.9
- 作者:Pflaum, Markus J.;Posthuma, Hessel;Tang, Xiang
- 通讯作者:Tang, Xiang
An index theorem for quotients of Bergman spaces on egg domains
- DOI:10.2140/akt.2021.6.357
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:M. Jabbari;Xiang Tang
- 通讯作者:M. Jabbari;Xiang Tang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiang Tang其他文献
Load Shedding Strategy Based on Combined Feed-Forward Plus Feedback Control over Data Streams
基于数据流组合前馈加反馈控制的减载策略
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Donghong Han;Yi Fang;Daqing Yi;Yifei Zhang;Xiang Tang;Guoren Wang - 通讯作者:
Guoren Wang
Trace Formula of Semicommutators
半换向器的微量公式
- DOI:
10.1016/j.jfa.2023.110141 - 发表时间:
2022 - 期刊:
- 影响因子:1.7
- 作者:
Xiang Tang;Yi Wang;Dechao Zheng - 通讯作者:
Dechao Zheng
Techno-economic assessment of wind and solar energy: Upgrading the LCOE model and enhancing geographical granularity
风能和太阳能的技术经济评估:升级平准化度电成本(LCOE)模型并提高地理粒度
- DOI:
10.1016/j.esr.2025.101686 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:9.900
- 作者:
Zheng Wang;Yuchu Huang;Keyin Zhou;Yuan Zeng;Xiang Tang;Bo Bai - 通讯作者:
Bo Bai
Hochschild (Co)homology of the Dunkl Operator Quantization of ℤ2-singularity
ℤ2-奇点的 Dunkl 算子量化的 Hochschild(共)同调
- DOI:
10.1093/imrn/rnr105 - 发表时间:
2010 - 期刊:
- 影响因子:1
- 作者:
A. Ramadoss;Xiang Tang - 通讯作者:
Xiang Tang
Shear Modulus of Weathered Red Sandstone Coarse-Grained Soil under Drying–Wetting Cycles
- DOI:
10.1007/s10706-023-02607-1 - 发表时间:
2023-08-28 - 期刊:
- 影响因子:2.000
- 作者:
Xiang Tang;Chang-ping Wen - 通讯作者:
Chang-ping Wen
Xiang Tang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiang Tang', 18)}}的其他基金
Conference: The Many Interactions between Symplectic and Poisson Geometry
会议:辛几何和泊松几何之间的许多相互作用
- 批准号:
2304750 - 财政年份:2023
- 资助金额:
$ 25.23万 - 项目类别:
Standard Grant
Conference: Canadian Operator Symposium 2023
会议:2023 年加拿大运营商研讨会
- 批准号:
2247130 - 财政年份:2023
- 资助金额:
$ 25.23万 - 项目类别:
Standard Grant
2020 Great Plains Operator Theory Symposium
2020年大平原算子理论研讨会
- 批准号:
1954733 - 财政年份:2020
- 资助金额:
$ 25.23万 - 项目类别:
Standard Grant
Noncommutative Geometry and Analytic Grothendieck Riemann Roch Theorem
非交换几何与解析格洛腾迪克黎曼罗赫定理
- 批准号:
1800666 - 财政年份:2018
- 资助金额:
$ 25.23万 - 项目类别:
Standard Grant
Conference: A Noncommutative Geometry Festival in Shanghai
会议:上海非交换几何节
- 批准号:
1701934 - 财政年份:2017
- 资助金额:
$ 25.23万 - 项目类别:
Standard Grant
Noncommutative Geometry and Index Theory
非交换几何和指数论
- 批准号:
1363250 - 财政年份:2014
- 资助金额:
$ 25.23万 - 项目类别:
Continuing Grant
Noncommutative Geometry: Its Applications to Geometry and Analysis
非交换几何:其在几何和分析中的应用
- 批准号:
0900985 - 财政年份:2009
- 资助金额:
$ 25.23万 - 项目类别:
Standard Grant
Differential geometry, noncommutative geometry and quantization
微分几何、非交换几何和量子化
- 批准号:
0604552 - 财政年份:2006
- 资助金额:
$ 25.23万 - 项目类别:
Standard Grant
Differential geometry, noncommutative geometry and quantization
微分几何、非交换几何和量子化
- 批准号:
0703775 - 财政年份:2006
- 资助金额:
$ 25.23万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 25.23万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 25.23万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 25.23万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 25.23万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 25.23万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 25.23万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 25.23万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 25.23万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 25.23万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 25.23万 - 项目类别:
Continuing Grant