Conference: The Many Interactions between Symplectic and Poisson Geometry

会议:辛几何和泊松几何之间的许多相互作用

基本信息

  • 批准号:
    2304750
  • 负责人:
  • 金额:
    $ 3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

This NSF award will provide partial support for US-based participants to attend the conference, The Many Interactions of Symplectic and Poisson Geometry, to take place June 19-23, 2023, at the Institut Henri Poincar\’e in Paris, France. Symplectic and Poisson geometry are sibling branches of geometry, both rooted deeply in mathematical formulation of mechanics and mathematical physics. This international conference will bring together leading experts of the two areas, as well as nearby domains, to present the recent significant advances in each area, to discuss the open problems and challenges in each field, and to create a forum for mathematicians at all career stages to interact, collaborate, and propose directions for future research. The award will provide US-based early-career researchers, members of underrepresented groups, and researchers not otherwise funded by NSF the opportunity to participate in the conference. This conference aims to help researchers in the related areas identify and jumpstart promising new research directions, and to immerse graduate students and junior researchers in the most current research in the fields. Topics will cover a wide range of areas in symplectic and Poisson geometry, including contact geometry, Dirac and generalized complex geometry, geometric mechanics, higher structures, integrable systems, Lie groupoids and algebroids, microlocal analysis, mirror symmetry, quantization and noncommutative geometry, quantum groups and representation theory, and symplectic topology. Additional details are available at https://sites.google.com/view/weinstein80/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该NSF奖项将为美国参与者提供部分支持,以参加将于2023年6月19日至23日在法国巴黎的亨利庞加莱研究所举行的辛几何和泊松几何的许多相互作用会议。 辛几何和泊松几何是几何学的兄弟分支,都深深植根于力学和数学物理的数学表述。这次国际会议将汇集这两个领域的领先专家,以及附近的领域,介绍每个领域的最新重大进展,讨论每个领域的开放问题和挑战,并为所有职业阶段的数学家创建一个论坛,以互动,合作,并为未来的研究提出方向。该奖项将为美国的早期职业研究人员,代表性不足的团体成员以及没有由NSF资助的研究人员提供参加会议的机会。 本次会议旨在帮助相关领域的研究人员识别和启动有前途的新研究方向,并让研究生和初级研究人员沉浸在该领域最新的研究中。主题将涵盖辛几何和泊松几何的广泛领域,包括接触几何、狄拉克和广义复几何、几何力学、高等结构、可积系统、李群胚和代数胚、微局部分析、镜像对称、量子化和非交换几何、量子群和表示论以及辛拓扑。更多的细节可在https://sites.google.com/view/weinstein80/This奖项反映了NSF的法定使命,并已被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiang Tang其他文献

Load Shedding Strategy Based on Combined Feed-Forward Plus Feedback Control over Data Streams
基于数据流组合前馈加反馈控制的减载策略
Trace Formula of Semicommutators
半换向器的微量公式
  • DOI:
    10.1016/j.jfa.2023.110141
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Xiang Tang;Yi Wang;Dechao Zheng
  • 通讯作者:
    Dechao Zheng
Techno-economic assessment of wind and solar energy: Upgrading the LCOE model and enhancing geographical granularity
风能和太阳能的技术经济评估:升级平准化度电成本(LCOE)模型并提高地理粒度
  • DOI:
    10.1016/j.esr.2025.101686
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    9.900
  • 作者:
    Zheng Wang;Yuchu Huang;Keyin Zhou;Yuan Zeng;Xiang Tang;Bo Bai
  • 通讯作者:
    Bo Bai
Hochschild (Co)homology of the Dunkl Operator Quantization of ℤ2-singularity
ℤ2-奇点的 Dunkl 算子量化的 Hochschild(共)同调
Shear Modulus of Weathered Red Sandstone Coarse-Grained Soil under Drying–Wetting Cycles

Xiang Tang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiang Tang', 18)}}的其他基金

Conference: Canadian Operator Symposium 2023
会议:2023 年加拿大运营商研讨会
  • 批准号:
    2247130
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
2020 Great Plains Operator Theory Symposium
2020年大平原算子理论研讨会
  • 批准号:
    1954733
  • 财政年份:
    2020
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: The Hypoelliptic Laplacian, Noncommutative Geometry, and Applications to Representations and Singular Spaces
FRG:合作研究:亚椭圆拉普拉斯、非交换几何以及在表示和奇异空间中的应用
  • 批准号:
    1952551
  • 财政年份:
    2020
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Noncommutative Geometry and Analytic Grothendieck Riemann Roch Theorem
非交换几何与解析格洛腾迪克黎曼罗赫定理
  • 批准号:
    1800666
  • 财政年份:
    2018
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Conference: A Noncommutative Geometry Festival in Shanghai
会议:上海非交换几何节
  • 批准号:
    1701934
  • 财政年份:
    2017
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Noncommutative Geometry and Index Theory
非交换几何和指数论
  • 批准号:
    1363250
  • 财政年份:
    2014
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
Noncommutative Geometry: Its Applications to Geometry and Analysis
非交换几何:其在几何和分析中的应用
  • 批准号:
    0900985
  • 财政年份:
    2009
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Differential geometry, noncommutative geometry and quantization
微分几何、非交换几何和量子化
  • 批准号:
    0604552
  • 财政年份:
    2006
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Differential geometry, noncommutative geometry and quantization
微分几何、非交换几何和量子化
  • 批准号:
    0703775
  • 财政年份:
    2006
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Many-particle Systems with Singular Interactions: Statistical Mechanics and Mean-field Dynamics
具有奇异相互作用的多粒子系统:统计力学和平均场动力学
  • 批准号:
    2247846
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Quantitative analyses of quantum many-body interactions in low-dimensional electron systems with hidden spin polarization
具有隐藏自旋极化的低维电子系统中量子多体相互作用的定量分析
  • 批准号:
    22K03495
  • 财政年份:
    2022
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Many-Body Echo, Topological Defects and Long-Range Interactions in Dressed Bose-Einstein Condensates
修饰玻色-爱因斯坦凝聚体中的多体回波、拓扑缺陷和长程相互作用
  • 批准号:
    2103542
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
RII Track-4: Quantum Control of Molecular Interactions with External Electromagnetic Fields: From Few to Many-Body Physics
RII Track-4:分子与外部电磁场相互作用的量子控制:从少体物理到多体物理
  • 批准号:
    1929190
  • 财政年份:
    2020
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Strain-tuning electronic structure and quantum many-body interactions
应变调节电子结构和量子多体相互作用
  • 批准号:
    EP/T02108X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 3万
  • 项目类别:
    Research Grant
Quantum many body interactions in the solid state
固态中的量子多体相互作用
  • 批准号:
    410866378
  • 财政年份:
    2019
  • 资助金额:
    $ 3万
  • 项目类别:
    Heisenberg Grants
Exploring the molecular biological basis of host-microbe interactions through many-to-many interactome technology.
通过多对多相互作用组技术探索宿主-微生物相互作用的分子生物学基础。
  • 批准号:
    19K05745
  • 财政年份:
    2019
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Semiconductor quantum wells excited by non-classical states of light: Interplay between photonic quantum correlations and many-body interactions in solid state systems
由非经典光态激发的半导体量子阱:固态系统中光子量子相关性与多体相互作用之间的相互作用
  • 批准号:
    405644111
  • 财政年份:
    2019
  • 资助金额:
    $ 3万
  • 项目类别:
    Research Grants
CAREER: Interfacing Spins with Photons - Quantum Many-Body Physics with Non-Local Interactions
职业:自旋与光子的接口 - 具有非局域相互作用的量子多体物理
  • 批准号:
    1753021
  • 财政年份:
    2018
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
Many Facets of Laser-Atom and Dipole-Dipole Interactions
激光-原子和偶极-偶极相互作用的多个方面
  • 批准号:
    1804026
  • 财政年份:
    2018
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了