Langlands Correspondences and Motivic L-Functions
朗兰兹对应和动机 L 函数
基本信息
- 批准号:1701651
- 负责人:
- 金额:$ 20.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of the abstract properties of numbers and their relations has appeared at an early stage in the history of every civilization, and reflection on the problems of number theory is consistently found at the root of most of the ideas that characterize contemporary life, from timekeeping, to the symmetry concepts of modern physics, to the logic of computers. Numbers can be studied in two different ways that are nearly independent: they can be used for measurement and they can be used to do arithmetic. The interaction between these two properties has always been the basis of number theory. The second half of the twentieth century saw the formulation of several ambitious research programs that aimed at obtaining a systematic understanding of these interactions by studying numbers and their relations with the help of symmetry. The branch of mathematics concerned with their geometric symmetries is called arithmetic geometry; the branch concerned with their dynamical symmetries is called automorphic forms. The Langlands program aims to unify these two branches by showing how each kind of symmetry encodes the other. Contemporary theoretical physics has introduced the concept of higher order symmetries, based on new notions of space that themselves owe a great deal to earlier developments in number theory; more recently, higher order symmetries have been of increasing importance in the Langlands program. This project explores the role of higher order symmetries in connection with several specific questions in the Langlands program, with the ultimate aim of contributing to the understanding of solutions of equations in whole numbers.The project is a contribution to the arithmetic theory of automorphic forms, in the setting of the Langlands program, with special attention to the arithmetic of motives and their associated Galois representations, directly or by application of congruence methods. The specific goals of the project are the study of the local Langlands parametrizations for general groups, using trace formula methods; the proof of Deligne's conjecture on special values of L-functions, especially tensor product L-functions; the verification of Venkatesh's conjecture on derived Hecke algebras for modular forms of weight 1, using an unexpected relation with p-adic L-functions; and the development of a character theory for mod p representations of p-adic groups. The methods involved in the present project combine standard techniques from arithmetic geometry and automorphic forms, an approach to cohomological automorphic forms based on differential geometry and representation theory, categorical representation theory, as well as new methods.
对数的抽象性质及其关系的研究出现在每一个文明历史的早期阶段,对数论问题的反思始终是当代生活中大多数思想的根源,从计时到现代物理学的对称概念,再到计算机的逻辑。 数字可以用两种几乎独立的不同方式来研究:它们可以用于测量,也可以用于算术。 这两个性质之间的相互作用一直是数论的基础。 世纪后半叶,几个雄心勃勃的研究项目应运而生,旨在借助对称性研究数字及其关系,从而系统地理解这些相互作用。 数学中有关它们的几何对称性的分支叫做算术几何;有关它们的动力学对称性的分支叫做自守形式。 朗兰兹计划旨在通过展示每种对称性如何编码另一种对称性来统一这两个分支。 当代理论物理学引入了高阶对称性的概念,基于新的空间概念,这些空间概念本身在很大程度上归功于数论的早期发展;最近,高阶对称性在朗兰兹纲领中越来越重要。 本项目探讨高阶对称性在朗兰兹纲领中的作用,并与几个具体问题联系起来,最终目的是有助于理解整数方程的解。本项目是对自守形式的算术理论的贡献,在朗兰兹纲领的背景下,特别关注动机的算术及其相关的伽罗瓦表示,直接或通过应用同余方法。 该项目的具体目标是:利用迹公式方法研究一般群的局部Langlands参数化;证明Deligne关于L-函数特别是张量积L-函数的特殊值的猜想;利用与p-adic L-函数的意外关系,验证Venkatesh关于权为1的模形式的导出Hecke代数的猜想;以及发展了p进群的模p表示的特征标理论。 在本项目中所涉及的方法结合联合收割机标准技术从算术几何和自守形式,一种方法上同调自守形式的基础上微分几何和表示理论,范畴表示理论,以及新的方法。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
$\hat{G}$-local systems on smooth projective curves are potentially automorphic
- DOI:10.4310/acta.2019.v223.n1.a1
- 发表时间:2016-09
- 期刊:
- 影响因子:3.7
- 作者:Gebhard Bockle;M. Harris;Chandrashekhar B. Khare;J. Thorne
- 通讯作者:Gebhard Bockle;M. Harris;Chandrashekhar B. Khare;J. Thorne
Minimal modularity lifting for nonregular symplectic representations
非正则辛表示的最小模块化提升
- DOI:10.1215/00127094-2019-0044
- 发表时间:2020
- 期刊:
- 影响因子:2.5
- 作者:Calegari, Frank;Geraghty, David
- 通讯作者:Geraghty, David
The Derived Hecke Algebra for Dihedral Weight One Forms
二面体权重一式的导出赫克代数
- DOI:10.1307/mmj/20217221
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:Darmon, Henri;Harris, Michael;Rotger, Victor;Venkatesh, Akshay
- 通讯作者:Venkatesh, Akshay
p-ADIC L-FUNCTIONS FOR UNITARY GROUPS
酉群的 p-ADIC L 函数
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Eischen, Ellen;Harris, Michael;Li, Jian-Shu;Skinner, Christopher
- 通讯作者:Skinner, Christopher
Chern classes of automorphic vector bundles, II
自守向量丛的陈氏类,II
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Esnault, H.;Harris, M.
- 通讯作者:Harris, M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Harris其他文献
Delivering the Value of Planning
实现规划的价值
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
David Adams;Michael O'Sullivan;A. Inch;Malcolm Tait;Craig Watkins;Michael Harris - 通讯作者:
Michael Harris
Why are medical students so motivated to learn ultrasound skills? A qualitative study
为什么医学生如此积极地学习超声技能?
- DOI:
10.1186/s12909-024-05420-3 - 发表时间:
2024 - 期刊:
- 影响因子:3.6
- 作者:
A. Pless;Roman Hari;Michael Harris - 通讯作者:
Michael Harris
Summer books
夏季书籍
- DOI:
10.1038/523528a - 发表时间:
2015 - 期刊:
- 影响因子:64.8
- 作者:
Nathaniel Comfort;K. Padian;Michael Harris;Jane Maienschein;T. Tansey;Xu Xing;Jennifer Rampling;Jon Butterworth;Daniel Cressey;Kelly Krause;Richard Van Noorden;Monica Contestabile;Emily Banham;Anna Armstrong;B. Kiser;Sara Abdulla - 通讯作者:
Sara Abdulla
Crowd-sourced data and its applications for new algorithms in photographic imaging
- DOI:
- 发表时间:
2015-04 - 期刊:
- 影响因子:0
- 作者:
Michael Harris - 通讯作者:
Michael Harris
Drawing on biology to inspire molecular design: a redox-responsive MRI probe based on Gd(iii)-nicotinamide.
借鉴生物学启发分子设计:基于 Gd(iii)-烟酰胺的氧化还原响应 MRI 探针。
- DOI:
10.1039/c8cc07092j - 发表时间:
2018 - 期刊:
- 影响因子:4.9
- 作者:
Michael Harris;Jacek L Kolanowski;Edward S. O’Neill;C. Hénoumont;S. Laurent;T. Parac‐Vogt;Elizabeth J. New - 通讯作者:
Elizabeth J. New
Michael Harris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Harris', 18)}}的其他基金
Langlands correspondences and the arithmetic of automorphic forms
朗兰兹对应和自守形式的算术
- 批准号:
2302208 - 财政年份:2023
- 资助金额:
$ 20.96万 - 项目类别:
Continuing Grant
L-Functions and Geometric Methods in Langlands Duality
朗兰兹对偶中的 L 函数和几何方法
- 批准号:
2001369 - 财政年份:2020
- 资助金额:
$ 20.96万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Geometric Structures in the p-Adic Langlands Program
FRG:合作研究:p-Adic Langlands 计划中的几何结构
- 批准号:
1952667 - 财政年份:2020
- 资助金额:
$ 20.96万 - 项目类别:
Continuing Grant
LSAMP BD: Tennessee State University TLSAMP
LSAMP BD:田纳西州立大学 TLSAMP
- 批准号:
1810991 - 财政年份:2018
- 资助金额:
$ 20.96万 - 项目类别:
Standard Grant
Tennessee Louis Stokes Alliance for Minority Participation
田纳西州路易斯斯托克斯少数族裔参与联盟
- 批准号:
1826954 - 财政年份:2018
- 资助金额:
$ 20.96万 - 项目类别:
Continuing Grant
Automorphic Galois Representations and Automorphic L-functions
自同构伽罗瓦表示和自同构 L 函数
- 批准号:
1404769 - 财政年份:2014
- 资助金额:
$ 20.96万 - 项目类别:
Continuing Grant
NUE: Improvement of Nanoscale Device Education via Theory, Experimental Design, and Characterization
NUE:通过理论、实验设计和表征改进纳米器件教育
- 批准号:
1242171 - 财政年份:2013
- 资助金额:
$ 20.96万 - 项目类别:
Standard Grant
Analysis of RNA-metal ion interactions by solution Raman spectroscopy
通过溶液拉曼光谱分析 RNA-金属离子相互作用
- 批准号:
1121373 - 财政年份:2011
- 资助金额:
$ 20.96万 - 项目类别:
Standard Grant
Collaborative Research: Acquisition of a Dual, Complementary Ground Penetrating Radar System for Geoscience Research and Teaching in South Carolina
合作研究:采购双互补探地雷达系统,用于南卡罗来纳州的地球科学研究和教学
- 批准号:
0323338 - 财政年份:2004
- 资助金额:
$ 20.96万 - 项目类别:
Standard Grant
相似海外基金
Langlands correspondences and the arithmetic of automorphic forms
朗兰兹对应和自守形式的算术
- 批准号:
2302208 - 财政年份:2023
- 资助金额:
$ 20.96万 - 项目类别:
Continuing Grant
RI: Small: Toward Efficient and Robust Dynamic Scene Understanding Based on Visual Correspondences
RI:小:基于视觉对应的高效、鲁棒的动态场景理解
- 批准号:
2310254 - 财政年份:2023
- 资助金额:
$ 20.96万 - 项目类别:
Standard Grant
Deriving Novel Bulk-Boundary Correspondences for Pseudo-Hermitian Systems
推导出伪厄米系统的新颖体边界对应关系
- 批准号:
20K03761 - 财政年份:2020
- 资助金额:
$ 20.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Crossmodal correspondences involving tastes
涉及品味的跨模式通信
- 批准号:
19K23384 - 财政年份:2019
- 资助金额:
$ 20.96万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Spectral correspondences for negatively curved Riemannian locally symmetric spaces
负弯曲黎曼局部对称空间的谱对应
- 批准号:
432944415 - 财政年份:2019
- 资助金额:
$ 20.96万 - 项目类别:
Research Grants
Evolutional origins of language explored through cross-modal correspondences
通过跨模态对应探索语言的进化起源
- 批准号:
19K12730 - 财政年份:2019
- 资助金额:
$ 20.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
How do (or don’t) we learn letters-sound associations? Neurocognitive processes underlying the learning of Grapheme-Phoneme-Correspondences
我们如何(或不)学习字母-声音关联?
- 批准号:
405007295 - 财政年份:2018
- 资助金额:
$ 20.96万 - 项目类别:
Research Grants
RUI:Curve Counting Theories and Their Correspondences
RUI:曲线计数理论及其对应关系
- 批准号:
1810969 - 财政年份:2018
- 资助金额:
$ 20.96万 - 项目类别:
Continuing Grant
Elucidation of the role of crossmodal correspondences in the temporal integration of multisensory information.
阐明跨模态对应在多感官信息的时间整合中的作用。
- 批准号:
18K13370 - 财政年份:2018
- 资助金额:
$ 20.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Serre-type conjectures and mod p Langlands correspondences
Serre 型猜想和 mod p Langlands 对应
- 批准号:
402885-2012 - 财政年份:2017
- 资助金额:
$ 20.96万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




