Towards Computationally Efficient One-Shot Design for Performance-Critical Distributed Multi-Agent Control
面向性能关键的分布式多智能体控制的计算高效的一次性设计
基本信息
- 批准号:1952862
- 负责人:
- 金额:$ 41.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Multi-agent systems, an important class of interconnected/networked systems composing a group of distributed interacting entities, have been emerging as a powerful paradigm for various unprecedented engineering applications, such as spacecraft formation flying, air-traffic management, sensory networks, etc. Through collaboration, a multi-agent system can accomplish numerous complicated control tasks that surpass the capability of a single dynamical system, such as moving an oversized object, environmental monitoring, and disaster search/rescue. Moreover, a multi-agent system can solve some problems faster using parallelism and increase robustness through redundancy. However, implementing cooperative multi-agent systems also presents challenges, making many related applications (especially those demanding critical controlled performance) remain conceptual. One important challenge lies in the lack of a systematic approach that allows control engineers to treat associated multi-agent distributed control design in a computationally-efficient and fully-integrated manner. Existing approaches of separating the design into high- and low-level controls often fail to analytically guarantee reliability, which is a critical requirement for acceptance by control engineers. This project supports fundamental research to provide the knowledge needed to overcome these challenges, thereby promoting broader real-world applications of multi-agent distributed control techniques. This project will also create unique opportunities to promote engineering education through the development of a cross-departmental robotics engineering program, and to boost minority involvement in scientific research.The goal of this project is to make fundamental contributions to the advancement of distributed multi-agent control theory by (i) developing novel hybrid switching control schemes to address complicated factors (e.g., agent’s physical dynamics, actuation and data sampling limitations, communication delays) in a holistic, one-shot distributed control design, and (ii) generating effective computational tools from combined deterministic and probabilistic perspectives to enable balancing design complexity and controlled performance. It will introduce innovative methodologies and tools to the field, leading to the following important paradigm changes: (i) from separated two-step designs dominantly adopted in current study to holistic, one-shot designs with provable network stability and controlled performance; (ii) from Lyapunov functions with simple quadratic forms dominantly utilized for current stability analysis and distributed control synthesis to Lyapunov functions with advanced composite forms that would significantly reduce analysis conservatism and improve controlled performance; and (iii) from distributed algorithms with trivial state/output feedback controller structures dominantly exploited by existing methods to distributed algorithms with novel hybrid controller structures of mixed continuous-time and discrete-event dynamics, facilitating simplified distributed optimal control synthesis via off-line convex optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多智能体系统是一类重要的互联/联网系统,由一组分布的交互实体组成,已成为航天器编队飞行、空中交通管理、传感网络等各种前所未有的工程应用的有力范例。通过协作,多智能体系统可以完成许多复杂的控制任务,这些控制任务超过了单一动力系统的能力,如移动超大物体、环境监测和灾害搜索/救援。此外,多智能体系统可以利用并行性更快地解决一些问题,并通过冗余增加健壮性。然而,实现协作的多智能体系统也带来了挑战,使得许多相关的应用(特别是那些要求关键控制性能的应用)仍然停留在概念上。一个重要的挑战在于缺乏一种系统的方法,使控制工程师能够以计算高效和完全集成的方式处理相关的多代理分布式控制设计。现有的将设计划分为高级别和低级别控制的方法往往无法从分析上保证可靠性,而可靠性是控制工程师接受的关键要求。该项目支持基础研究,以提供克服这些挑战所需的知识,从而促进多代理分布式控制技术在现实世界中更广泛的应用。该项目还将创造独特的机会,通过开发跨部门的机器人工程计划来促进工程教育,并促进少数人参与科学研究。该项目的目标是通过(I)开发新颖的混合切换控制方案来解决整体、一次性分布式控制设计中的复杂因素(例如,智能体的物理动力学、驱动和数据采样限制、通信延迟),以及(Ii)从确定性和概率的组合角度生成有效的计算工具,以平衡设计复杂性和受控性能,从而为分布式多智能体控制理论的发展做出基础性贡献。它将把创新的方法和工具引入该领域,导致以下重要的范式变化:(I)从当前研究中主要采用的分离的两步设计,到具有可证明的网络稳定性和受控性能的整体、一次性设计;(Ii)从主要用于当前稳定性分析和分布式控制综合的简单二次型的李亚普诺夫函数,到具有高级复合形式的李亚普诺夫函数,这将显著降低分析保守性并改善受控性能;以及(Iii)从现有方法主要利用的简单状态/输出反馈控制器结构的分布式算法,到具有混合连续时间和离散事件动态的新型混合控制器结构的分布式算法,通过离线凸优化促进简化的分布式最优控制综合。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A PHD Filter Based Localization System for Robotic Swarms
- DOI:10.1007/978-3-030-92790-5_14
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:R. T. Perera;C. Yuan;P. Stegagno
- 通讯作者:R. T. Perera;C. Yuan;P. Stegagno
Hybrid control of switched LFT uncertain systems with time-varying input delays
- DOI:10.1080/00207179.2021.1975197
- 发表时间:2021-09
- 期刊:
- 影响因子:2.1
- 作者:C. Yuan;Yan Gu;Weizhen Zeng
- 通讯作者:C. Yuan;Yan Gu;Weizhen Zeng
Cooperative place recognition in robotic swarms
机器人群中的合作位置识别
- DOI:10.1145/3412841.3441954
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Brent, Sarah;Yuan, Chengzhi;Stegagno, Paolo
- 通讯作者:Stegagno, Paolo
Application of Distributed Linear Multi-Agent Containment Control to Robotic Systems
- DOI:10.1016/j.ifacol.2022.11.240
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Stefan Tauchnitz;C. Yuan;P. Stegagno
- 通讯作者:Stefan Tauchnitz;C. Yuan;P. Stegagno
Swarm Localization Through Cooperative Landmark Identification
通过协作地标识别进行群体定位
- DOI:10.1007/978-3-030-92790-5_33
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Brent, Sarah;Yuan, Chengzhi;Stegagno, Paolo.
- 通讯作者:Stegagno, Paolo.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chengzhi Yuan其他文献
A single nucleotide mutation in emClphyB/em gene is associated with a short lateral branch phenotype in watermelon
emClphyB/em 基因中的单个核苷酸突变与西瓜中的短侧枝表型相关。
- DOI:
10.1016/j.scienta.2023.112378 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:4.200
- 作者:
Yaru Duan;Hewei Li;Sikandar Amanullah;Xiuping Bao;Yu Guo;Xiujie Liu;Hongguo Xu;Jixiu Liu;Yue Gao;Chengzhi Yuan;Wen Zhao;Zheng Li;Meiling Gao - 通讯作者:
Meiling Gao
STENet: A hybrid spatio-temporal embedding network for human trajectory forecasting
STENet:用于人体轨迹预测的混合时空嵌入网络
- DOI:
10.1016/j.engappai.2021.104487 - 发表时间:
2021-11 - 期刊:
- 影响因子:8
- 作者:
Bo Zhang;Chengzhi Yuan;Tao Wang;Hongbo Liu - 通讯作者:
Hongbo Liu
A novel technique for the detection of myocardial dysfunction using ECG signals based on hybrid signal processing and neural networks
基于混合信号处理和神经网络的心电图信号检测心肌功能障碍的新技术
- DOI:
10.1007/s00500-020-05465-8 - 发表时间:
2021-01 - 期刊:
- 影响因子:4.1
- 作者:
Wei Zeng;Jian Yuan;Chengzhi Yuan;Qinghui Wang;Fenglin Liu;Ying Wang - 通讯作者:
Ying Wang
Classification of myocardial infarction based on hybrid feature extraction and artificial intelligence tools by adopting tunable-Q wavelet transform (TQWT), variational mode decomposition (VMD) and neural networks
采用可调谐 Q 小波变换 (TQWT)、变分模式分解 (VMD) 和神经网络,基于混合特征提取和人工智能工具的心肌梗死分类
- DOI:
10.1016/j.artmed.2020.101848 - 发表时间:
2020-05 - 期刊:
- 影响因子:7.5
- 作者:
Wei Zeng;Jian Yuan;Chengzhi Yuan;Qinghui Wang;Fenglin Liu;Ying Wang - 通讯作者:
Ying Wang
Artificial intelligence for accurate classification of respiratory abnormality levels using image-based features and interpretable insights
利用基于图像的特征和可解释的见解进行呼吸异常水平准确分类的人工智能
- DOI:
10.1016/j.asoc.2024.112678 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:6.600
- 作者:
Wei Zeng;Liangmin Shan;Qinghui Wang;Fenglin Liu;Ying Wang;Chengzhi Yuan;Shaoyi Du - 通讯作者:
Shaoyi Du
Chengzhi Yuan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chengzhi Yuan', 18)}}的其他基金
Towards Accurate and Efficient Dynamics Modeling and Control for Soft Robots in Unstructured Environments
非结构化环境中软机器人的准确高效的动力学建模和控制
- 批准号:
1929729 - 财政年份:2019
- 资助金额:
$ 41.32万 - 项目类别:
Standard Grant
相似海外基金
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
- 批准号:
2339956 - 财政年份:2024
- 资助金额:
$ 41.32万 - 项目类别:
Continuing Grant
Computationally Efficient Methods for Control of Epidemics on Networks
控制网络流行病的计算有效方法
- 批准号:
2240848 - 财政年份:2023
- 资助金额:
$ 41.32万 - 项目类别:
Standard Grant
Computationally efficient multiphysics and multiscale modeling approaches applied to porous materials engineering
适用于多孔材料工程的计算高效的多物理场和多尺度建模方法
- 批准号:
DGECR-2022-00026 - 财政年份:2022
- 资助金额:
$ 41.32万 - 项目类别:
Discovery Launch Supplement
Computationally efficient multiphysics and multiscale modeling approaches applied to porous materials engineering
适用于多孔材料工程的计算高效的多物理场和多尺度建模方法
- 批准号:
RGPIN-2022-04639 - 财政年份:2022
- 资助金额:
$ 41.32万 - 项目类别:
Discovery Grants Program - Individual
ATD: Collaborative Research: Computationally Efficient Algorithms for Detecting Anomalous Atmospheric Emissions
ATD:协作研究:用于检测异常大气排放的计算高效算法
- 批准号:
2341843 - 财政年份:2022
- 资助金额:
$ 41.32万 - 项目类别:
Standard Grant
A Computationally Efficient Approach to Predict Population Risk with Machine Learning
通过机器学习预测人口风险的高效计算方法
- 批准号:
10379613 - 财政年份:2022
- 资助金额:
$ 41.32万 - 项目类别:
Collaborative Research: Computationally Efficient Algorithms for Large-scale Bilevel Optimization Problems
协作研究:大规模双层优化问题的计算高效算法
- 批准号:
2127697 - 财政年份:2021
- 资助金额:
$ 41.32万 - 项目类别:
Standard Grant
Computationally investigating an unexplored domain for efficient hydrogen production
通过计算研究有效制氢的未探索领域
- 批准号:
565008-2021 - 财政年份:2021
- 资助金额:
$ 41.32万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Collaborative Research: Computationally Efficient Algorithms for Large-scale Bilevel Optimization Problems
协作研究:大规模双层优化问题的计算高效算法
- 批准号:
2127696 - 财政年份:2021
- 资助金额:
$ 41.32万 - 项目类别:
Standard Grant
EAGER: IIS: Enabling Computationally Efficient Fuzzy Clustering for Distributed Big Data
EAGER:IIS:为分布式大数据启用计算高效的模糊聚类
- 批准号:
2140729 - 财政年份:2021
- 资助金额:
$ 41.32万 - 项目类别:
Standard Grant