Geometric and Semantic Structures for Two- and Three-Dimensional Shape Understanding

二维和三维形状理解的几何和语义结构

基本信息

  • 批准号:
    1953052
  • 负责人:
  • 金额:
    $ 16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

True computer vision will provide end-to-end image analysis, where images are decomposed into objects of interest, those objects are decomposed into parts, and the parts and objects are recognized. Performing integrated tasks with an image, such as shape generation, animation, editing, or partial matching, requires structure-aware shape processing. A full shape structure consists of a decomposition into parts, an understanding of which parts are more significant than others, and an ability to measure similarity of parts moving toward recognition. A pipeline that takes as input two- or three-dimensional images, performs accurate segmentation to determine shapes of interest, extracts a shape structure, then recognizes the parts and the shapes would represent a fundamental step forward in artificial vision. The task is challenging because human visual perception does not follow computational rules. For example, two shapes can both be similar to a third shape without being similar to each other. For another, our understanding of meaning of shapes adds a semantic level to our geometric perception: if someone is seated on an object, we classify that object as a chair regardless of its shape. Any useful shape analysis must explicitly model the interplay between semantics and geometric shape. This project aims to develop the foundational theory of shape structure and provide robust implementations of the resulting techniques while maintaining the connection to human semantic perception through benchmarking to user studies.The Blum medial axis gives a skeletal decomposition of a closed region in Euclidean space. For spatial dimensions 2 and 3, these regions can be interpreted as 2D and 3D shapes, with the skeletal model providing a lower-dimensional representation of the shape. The skeleton, a Whitney stratified set, is a deformation retract of the shape boundary that captures complete geometric information about the boundary of the shape. This project will introduce functions on the medial axis that encode shape geometry in a way that allows for the determination of a parts decomposition and hierarchy within a shape, as well as similarity between parts, for shapes of any finite genus. Based on that analysis, the research will develop formal measures of shape complexity and benchmark results through human perception studies. Finally, the project aims to connect the new shape structure characterization to current approaches using neural networks for image understanding by developing network architectures that learn the geometry of a shape skeleton from its natural or binary image representation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
真正的计算机视觉将提供端到端的图像分析,其中图像被分解为感兴趣的对象,这些对象被分解为部分,并且部分和对象被识别。使用图像执行集成任务(如形状生成、动画、编辑或部分匹配)需要结构感知形状处理。一个完整的形状结构包括分解成部分,理解哪些部分比其他部分更重要,并能够测量走向识别的部分的相似性。将二维或三维图像作为输入,执行精确分割以确定感兴趣的形状,提取形状结构,然后识别零件和形状的管道将代表人工视觉的基本进步。这项任务具有挑战性,因为人类的视觉感知不遵循计算规则。例如,两个形状可以都类似于第三形状,而不彼此类似。另一方面,我们对形状意义的理解为我们的几何感知增加了一个语义层面:如果有人坐在一个物体上,我们会把这个物体归类为椅子,而不管它的形状如何。任何有用的形状分析都必须明确地建模语义和几何形状之间的相互作用。该项目旨在发展形状结构的基础理论,并提供所产生的技术的鲁棒实现,同时通过对用户研究的基准测试来保持与人类语义感知的联系。Blum中轴给出了欧几里得空间中封闭区域的骨架分解。对于空间维度2和3,这些区域可以被解释为2D和3D形状,骨架模型提供了形状的低维表示。骨架,惠特尼分层集,是一个变形收缩的形状边界,捕捉完整的几何信息的边界形状。该项目将介绍中轴上的函数,其编码形状几何形状的方式允许确定形状内的部分分解和层次结构,以及部分之间的相似性,对于任何有限属的形状。在此分析的基础上,该研究将通过人类感知研究开发形状复杂性的正式措施和基准结果。最后,该项目旨在通过开发网络架构,从自然或二进制图像表示中学习形状骨架的几何形状,将新的形状结构表征与当前使用神经网络进行图像理解的方法联系起来。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Semi-supervised Nonnegative Matrix Factorization for Document Classification
  • DOI:
    10.1109/ieeeconf53345.2021.9723109
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jamie Haddock;Lara Kassab;Sixian Li;Alona Kryshchenko;Rachel Grotheer;Elena Sizikova;Chuntian Wang;Thomas Merkh;R. W. M. A. Madushani;Miju Ahn;D. Needell;Kathryn Leonard
  • 通讯作者:
    Jamie Haddock;Lara Kassab;Sixian Li;Alona Kryshchenko;Rachel Grotheer;Elena Sizikova;Chuntian Wang;Thomas Merkh;R. W. M. A. Madushani;Miju Ahn;D. Needell;Kathryn Leonard
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kathryn Leonard其他文献

Exploring 2D Shape Complexity
探索 2D 形状复杂性
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Chambers;T. Emerson;C. Grimm;Kathryn Leonard
  • 通讯作者:
    Kathryn Leonard
ChatGPT Translation of Program Code for Image Sketch Abstraction
图像草图抽象程序代码的 ChatGPT 翻译
  • DOI:
    10.3390/app14030992
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Kumar;Z. Gordon;Oluwatunmise Alabi;Jenny Li;Kathryn Leonard;Linda Ness;Patricia Morreale
  • 通讯作者:
    Patricia Morreale
Geometry-Based Classification for Automated Schizophrenia Diagnosis
基于几何的分类用于自动精神分裂症诊断
Efficient Shape Modeling: ⋮-Entropy, Adaptive Coding, and Boundary Curves -vs- Blum’s Medial Axis
高效形状建模:⋮-熵、自适应编码和边界曲线 -vs- Blum 中轴
Metric spaces of shapes and applications: compression, curve matching and low-dimensional representation
形状度量空间和应用:压缩、曲线匹配和低维表示
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matt Feiszli;S. Kushnarev;Kathryn Leonard
  • 通讯作者:
    Kathryn Leonard

Kathryn Leonard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kathryn Leonard', 18)}}的其他基金

Center for Undergraduate Research in Mathematics
数学本科生研究中心
  • 批准号:
    2317453
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Center for Undergraduate Research in Mathematics
数学本科生研究中心
  • 批准号:
    1722563
  • 财政年份:
    2017
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
CAREER: Shape Model Selection: Theory and Practice
职业:形状模型选择:理论与实践
  • 批准号:
    0954256
  • 财政年份:
    2010
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant

相似海外基金

A semantic - syntactic study on the differences between article and articleless languages, focusing on coordinating conjunction structures
冠词和无冠词语言差异的语义-句法研究,重点是协调连词结构
  • 批准号:
    18K00536
  • 财政年份:
    2018
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study on Semantic Structures of Copular Sentences and Definiteness of Noun Phrases
系辞句的语义结构与名词短语的确定性研究
  • 批准号:
    17K02684
  • 财政年份:
    2017
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Syntactic and Semantic Study of Internal Structures of Adnominal Clauses in Modern Japanese
现代日语主语从句内部结构的句法语义研究
  • 批准号:
    16K02745
  • 财政年份:
    2016
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study of Sentence Structures and Semantic and Discorse Interface: On Rhetorical Question and the Related WH-Constructions
句子结构与语义与话语界面的研究:论反问句及相关WH结构
  • 批准号:
    15K02607
  • 财政年份:
    2015
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cognitive Knowledge Structures in Scene Perception - Behavioral and Neural Correlates of Semantic and Syntactic Scene Processing
场景感知中的认知知识结构 - 语义和句法场景处理的行为和神经关联
  • 批准号:
    242736900
  • 财政年份:
    2014
  • 资助金额:
    $ 16万
  • 项目类别:
    Independent Junior Research Groups
Empirical research on the semantic structures of basic polysemous Japanese verbs and adjunctives and their acquisition and education
日语基本多义动词和形容词的语义结构及其习得和教育的实证研究
  • 批准号:
    25330168
  • 财政年份:
    2013
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Efficient index data structures and natural language processing for semantic full-text search
用于语义全文搜索的高效索引数据结构和自然语言处理
  • 批准号:
    207167963
  • 财政年份:
    2011
  • 资助金额:
    $ 16万
  • 项目类别:
    Priority Programmes
Semantic Structures for Higher-Order Information Flow
高阶信息流的语义结构
  • 批准号:
    EP/H023097/1
  • 财政年份:
    2010
  • 资助金额:
    $ 16万
  • 项目类别:
    Research Grant
On individuals and events in the lexical semantic structures of predicates : with special reference to the notion of affectedness
论谓语词汇语义结构中的个体和事件:特别提到影响的概念
  • 批准号:
    21720143
  • 财政年份:
    2009
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Toward the Understanding of the Semantic Interpretational Mechanism in Linguistic Expressions with Scalar Structures
标量结构语言表达语义解释机制的理解
  • 批准号:
    20720110
  • 财政年份:
    2008
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了