Conference on Unexpected and Asymptotic Properties of Projective Varieties
射影簇的意外和渐近性质会议
基本信息
- 批准号:1953096
- 负责人:
- 金额:$ 1.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-15 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This National Science Foundation award supports the Conference on Unexpected and Asymptotic Properties of Projective Varieties that will take place on May 15-17, 2020 in Lincoln, Nebraska. In the intervening fifteen years since the previous conference on varieties with unexpected properties took place in Sienna, Italy, the state of the art in this area of research has undergone tremendous developments. Despite numerous foundational advances, there are many classically studied problems that still do not have a satisfactory resolution. The conference will highlight the transformative developments undergone by this area of research in recent years and formulate new directions for future research. Towards this end, we will bring together experts in the field and carefully select participants to ensure involvement of students and junior investigators and of individuals from groups under-represented in the mathematical sciences. Further details can be found at the conference website http://www.math.unl.edu/~aseceleanu2/BrianFest2020.htmlThe topic of the conference is anchored broadly in commutative algebra and algebraic geometry, with a focus on interpolation problems in algebraic geometry and asymptotic invariants of homogeneous ideals. The overall objective of this conference is to bring together experts in commutative algebra and algebraic geometry to confer on three topics of common interest: symbolic powers of ideals, asymptotic invariants of linear systems, and unexpected varieties. Despite the diverse contexts in which these notions arise and the many areas they exhibit connections to, each of these topics is closely related to the others. Communication among mathematicians working on these topics is vital and has already led to significant progress. The relatively small size of the meeting and its disciplinary focus will be particularly effective at enabling participants to establish productive collaborative relationships.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个国家科学基金会奖支持投影品种的意外和渐近性质会议将于2020年5月15日至17日在内布拉斯加州林肯举行。自上一次在意大利锡耶纳举行的关于具有意外特性的品种的会议以来的15年里,这一研究领域的技术水平经历了巨大的发展。尽管有许多基础性的进步,但仍有许多经典研究的问题没有得到令人满意的解决。会议将突出这一研究领域近年来的变革性发展,并为未来的研究制定新的方向。为此,我们将汇集该领域的专家,并精心挑选参与者,以确保学生和初级研究人员以及来自数学科学代表性不足的群体的个人的参与。进一步的细节可以在会议网站http://www.math.unl.edu/~aseceleanu2/BrianFest2020.htmlThe找到会议的主题广泛地锚定在交换代数和代数几何,重点是代数几何中的插值问题和齐次理想的渐近不变量。本次会议的总体目标是汇集交换代数和代数几何专家,讨论共同感兴趣的三个主题:理想的符号幂,线性系统的渐近不变量和意外的品种。尽管这些概念产生的背景不同,它们与许多领域有联系,但这些主题中的每一个都与其他主题密切相关。从事这些主题的数学家之间的交流至关重要,并且已经取得了重大进展。会议规模相对较小,其学科重点将特别有效地使与会者建立富有成效的合作关系。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandra Seceleanu其他文献
The projective dimension of codimension two algebras presented by quadrics
- DOI:
10.1016/j.jalgebra.2013.06.038 - 发表时间:
2013-11-01 - 期刊:
- 影响因子:
- 作者:
Craig Huneke;Paolo Mantero;Jason McCullough;Alexandra Seceleanu - 通讯作者:
Alexandra Seceleanu
Alexandra Seceleanu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandra Seceleanu', 18)}}的其他基金
Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
- 批准号:
2401482 - 财政年份:2024
- 资助金额:
$ 1.48万 - 项目类别:
Continuing Grant
Conference: Women in Commutative Algebra II
会议:交换代数中的女性 II
- 批准号:
2324929 - 财政年份:2023
- 资助金额:
$ 1.48万 - 项目类别:
Standard Grant
Symbolic Powers and Lefschetz Properties: Geometric and Homological Aspects
符号幂和 Lefschetz 性质:几何和同调方面
- 批准号:
2101225 - 财政年份:2021
- 资助金额:
$ 1.48万 - 项目类别:
Standard Grant
Collaborative Proposal: Central States Mathematics Undergraduate Research Conferences
合作提案:中部各州数学本科生研究会议
- 批准号:
1811000 - 财政年份:2018
- 资助金额:
$ 1.48万 - 项目类别:
Standard Grant
Symbolic Powers, Configurations of Linear Spaces, and Applications
符号幂、线性空间的配置及应用
- 批准号:
1601024 - 财政年份:2016
- 资助金额:
$ 1.48万 - 项目类别:
Standard Grant
相似海外基金
Functional analysis of alkylglycerol monooxygenase; an unexpected modulator of Wnt signalling and embryogenesis
烷基甘油单加氧酶的功能分析;
- 批准号:
BB/W017032/1 - 财政年份:2023
- 资助金额:
$ 1.48万 - 项目类别:
Research Grant
Unexpected roles of phosphoinositides in the nucleus
磷酸肌醇在细胞核中的意外作用
- 批准号:
10711033 - 财政年份:2023
- 资助金额:
$ 1.48万 - 项目类别:
Corticothalamic circuits mediating behavioral adaptations to unexpected reward omission
皮质丘脑回路介导对意外奖励遗漏的行为适应
- 批准号:
10734683 - 财政年份:2023
- 资助金额:
$ 1.48万 - 项目类别:
The role of brainstem projecting extended amygdala neurons in sudden unexpected death in epilepsy
脑干投射扩展杏仁核神经元在癫痫猝死中的作用
- 批准号:
10718024 - 财政年份:2023
- 资助金额:
$ 1.48万 - 项目类别:
Emergent Value: Capturing the unexpected value of arts experiences
新兴价值:捕捉艺术体验的意想不到的价值
- 批准号:
AH/X006743/1 - 财政年份:2023
- 资助金额:
$ 1.48万 - 项目类别:
Fellowship
Unexpected mechanism underlying mislocalization of thrombocytopenia-associated ETV6 point mutation
血小板减少症相关 ETV6 点突变错误定位的意外机制
- 批准号:
10605685 - 财政年份:2023
- 资助金额:
$ 1.48万 - 项目类别:
Unexpected Developments UI Solution
意外的发展 UI 解决方案
- 批准号:
10070954 - 财政年份:2023
- 资助金额:
$ 1.48万 - 项目类别:
Collaborative R&D
Collaborative Research: NSF Workshop on Models for Uncovering Rules and Unexpected Phenomena in Biological Systems (MODULUS)
合作研究:NSF 揭示生物系统规则和意外现象模型研讨会 (MODULUS)
- 批准号:
2232740 - 财政年份:2022
- 资助金额:
$ 1.48万 - 项目类别:
Standard Grant