Symbolic Powers, Configurations of Linear Spaces, and Applications

符号幂、线性空间的配置及应用

基本信息

  • 批准号:
    1601024
  • 负责人:
  • 金额:
    $ 13.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

This research project is in the area of commutative algebra, with connections to algebraic geometry and computational algebra. Commutative algebra has applications in a range of areas, from statistics to game theory, from robotics to string theory. The main theme of this project is the study of configurations of linear subspaces, such as finite collections of lines in the plane. These problems are classically motivated by algebraic geometry and have received renewed interest in the last fifteen years. Despite a rapidly growing body of work, there is still much progress needed to understand the subtle behavior of these configurations. This research program aims to take advantage of the combinatorial structure inherently present in this context. The project will also study potential applications of this work to coding theory.The common thread for the investigations in this project concerns the asymptotic properties of symbolic powers. One goal of the project is the determination of certain invariants that measure these asymptotic properties (resurgence, Waldschmidt constants). Another goal is to characterize families of ideals that display extremal behavior with respect to the containment between ordinary and symbolic powers. Among the tools to be employed are methods involving the study of Rees algebras, minimal free resolutions, and local cohomology for powers of ideals. Another line of inquiry will consider the symbolic powers for singular loci of line arrangements, or more generally hyperplane arrangements, with special emphasis on reflection arrangements because of their additional structure. Despite their undoubted theoretical significance, not much is known about the practical applications of symbolic powers. The investigator and collaborators plan to start an investigation on the implications of this recent progress on symbolic powers from the point of view of applied algebraic geometry. Some computational tools in the form of scripts for the computer algebra system Macaulay will be developed to aid with the inquiry.
这个研究项目是在交换代数领域,与代数几何和计算代数的连接。交换代数的应用范围很广,从统计学到博弈论,从机器人学到弦论。 该项目的主题是研究线性子空间的结构,例如平面上的有限直线集合。这些问题是经典的动机代数几何,并已收到新的兴趣,在过去的十五年。尽管工作量迅速增长,但要理解这些配置的微妙行为仍需要取得很大进展。该研究计划旨在利用这种背景下固有的组合结构。该项目还将研究这项工作在编码理论中的潜在应用。该项目的共同研究主题是符号幂的渐近性质。该项目的一个目标是确定某些测量这些渐近性质的不变量(复苏,Waldscherk常数)。另一个目标是表征家庭的理想,显示极端行为的遏制之间的普通和象征性的权力。其中所采用的工具是方法,涉及研究里斯代数,最小的自由决议,和当地上同调的权力的理想。另一条研究路线将考虑线排列或更一般的超平面排列的奇异轨迹的符号能力,特别强调反射排列,因为它们具有额外的结构。尽管象征性权力的理论重要性受到质疑,但人们对象征性权力的实际应用知之甚少。研究者和合作者计划从应用代数几何的角度开始调查这一最新进展对符号幂的影响。一些计算工具的形式脚本的计算机代数系统麦考利将开发,以协助调查。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Betti numbers of symmetric shifted ideals
  • DOI:
    10.1016/j.jalgebra.2020.04.037
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Jennifer Biermann;Hernán de Alba;Federico Galetto;S. Murai;U. Nagel;Augustine O’Keefe;Tim Römer;A. Seceleanu
  • 通讯作者:
    Jennifer Biermann;Hernán de Alba;Federico Galetto;S. Murai;U. Nagel;Augustine O’Keefe;Tim Römer;A. Seceleanu
Symbolic powers of codimension two Cohen-Macaulay ideals
余维两个科恩-麦考利理想的符号幂
  • DOI:
    10.1080/00927872.2020.1769120
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Cooper, Susan;Fatabbi, Giuliana;Guardo, Elena;Lorenzini, Anna;Migliore, Juan;Nagel, Uwe;Seceleanu, Alexandra;Szpond, Justyna;Tuyl, Adam Van
  • 通讯作者:
    Tuyl, Adam Van
Generalized minimum distance functions and algebraic invariants of Geramita ideals
广义最小距离函数和 Geramita 理想的代数不变量
  • DOI:
    10.1016/j.aam.2019.101940
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Cooper, Susan M.;Seceleanu, Alexandra;Tohăneanu, Ştefan O.;Pinto, Maria Vaz;Villarreal, Rafael H.
  • 通讯作者:
    Villarreal, Rafael H.
Quadratic Gorenstein algebras with many surprising properties
具有许多令人惊讶的性质的二次 Gorenstein 代数
  • DOI:
    10.1007/s00013-020-01492-x
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    McCullough, Jason;Seceleanu, Alexandra
  • 通讯作者:
    Seceleanu, Alexandra
Implicitization of tensor product surfaces via virtual projective resolutions
通过虚拟投影分辨率隐式化张量积表面
  • DOI:
    10.1090/mcom/3548
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Duarte, Eliana;Seceleanu, Alexandra
  • 通讯作者:
    Seceleanu, Alexandra
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexandra Seceleanu其他文献

The projective dimension of codimension two algebras presented by quadrics
  • DOI:
    10.1016/j.jalgebra.2013.06.038
  • 发表时间:
    2013-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Craig Huneke;Paolo Mantero;Jason McCullough;Alexandra Seceleanu
  • 通讯作者:
    Alexandra Seceleanu

Alexandra Seceleanu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexandra Seceleanu', 18)}}的其他基金

Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
  • 批准号:
    2401482
  • 财政年份:
    2024
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Continuing Grant
Conference: Women in Commutative Algebra II
会议:交换代数中的女性 II
  • 批准号:
    2324929
  • 财政年份:
    2023
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Standard Grant
Symbolic Powers and Lefschetz Properties: Geometric and Homological Aspects
符号幂和 Lefschetz 性质:几何和同调方面
  • 批准号:
    2101225
  • 财政年份:
    2021
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Standard Grant
Conference on Unexpected and Asymptotic Properties of Projective Varieties
射影簇的意外和渐近性质会议
  • 批准号:
    1953096
  • 财政年份:
    2020
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Central States Mathematics Undergraduate Research Conferences
合作提案:中部各州数学本科生研究会议
  • 批准号:
    1811000
  • 财政年份:
    2018
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Standard Grant

相似海外基金

Paths to primacy: How rising powers win domination in Asia, 1500-present
通往霸主之路:崛起中的大国如何赢得亚洲统治地位(1500 年以来)
  • 批准号:
    FT230100547
  • 财政年份:
    2024
  • 资助金额:
    $ 13.11万
  • 项目类别:
    ARC Future Fellowships
Reforming the Law and Procedures in relation to the Lasting Powers of Attorney (LPA) System
改革与持久授权书(LPA)制度有关的法律和程序
  • 批准号:
    2738729
  • 财政年份:
    2022
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Studentship
Powers of Edge Ideals
边缘理想的力量
  • 批准号:
    574684-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 13.11万
  • 项目类别:
    University Undergraduate Student Research Awards
Powers in Commutative Algebra: Approaches, Properties, and Applications
交换代数的幂:方法、性质和应用
  • 批准号:
    RGPIN-2018-05004
  • 财政年份:
    2022
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Discovery Grants Program - Individual
Separation of Powers beyond the State in the Realization of Human Rights Treaties
在实现人权条约方面超越国家的权力分立
  • 批准号:
    22K13291
  • 财政年份:
    2022
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
R.E.N - A platform that powers potential
R.E.N - 激发潜力的平台
  • 批准号:
    10045656
  • 财政年份:
    2022
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Collaborative R&D
Asymptotic growth of symbolic powers, mixed multiplicities, and convex bodies
符号幂、混合多重性和凸体的渐近增长
  • 批准号:
    2303605
  • 财政年份:
    2022
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Standard Grant
Small States' use of law of the sea litigation against greater powers
小国利用海洋法对抗大国
  • 批准号:
    FT210100186
  • 财政年份:
    2022
  • 资助金额:
    $ 13.11万
  • 项目类别:
    ARC Future Fellowships
Perfect powers in elliptic divisibility sequences
椭圆整除序列的完美幂
  • 批准号:
    2604766
  • 财政年份:
    2021
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Studentship
Symbolic Powers and p-Derivations
符号幂和 p 导数
  • 批准号:
    2140355
  • 财政年份:
    2021
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了