Multitype Particle Systems

多类型粒子系统

基本信息

  • 批准号:
    1953141
  • 负责人:
  • 金额:
    $ 19.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2021-02-28
  • 项目状态:
    已结题

项目摘要

Interacting particle systems with random dynamics are fundamental for modeling phenomena in the physical and social sciences. Such systems can be used to describe chemical reactions, as well as the spread of disease, information, and species through a network. These models often become more meaningful when multiple particle types are incorporated. For example, the celebrated First Passage Percolation model describes the spread of a single species through an environment; the incorporation of competing species enriches the model. This project seeks to study more realistic variants of well-known models for chemical reactions, epidemic outbreaks, and the spread of information as to deepen our understanding of important phenomena from across the sciences and further develop the mathematics that helps explain them. The project will involve the undergraduate students training.This project will consider five different stochastic multi-type interacting particle systems: (1) The Diffusion-Limited Annihilation model is an annihilating particle system in which collisions between opposite type particles result in mutual annihilation. The version in which particles have different speeds is difficult to study and conjectured to exhibit anomalous behavior when different particle types are initially balanced. (2) The Ballistic Annihilation model has three particle types and all collisions result in annihilation. The limiting particle density in different regimes will be characterized. (3) The Chase-Escape model is a competitive stochastic growth model conjectured to have a coexistence phase even when the predatory species is fitter than the prey. The effect of the environment and fitness of the different species on coexistence will be investigated. (4) The A+B-2A model describes a growing system of infected particles. This process was recently generalized to the continuum, which leads to several new questions at the intersection of discrete and continuous probability, which will be addressed. (5) Lastly, the classical Susceptible-Infected-Removed model is well-understood on random graphs near the critical connectivity threshold. A natural extension is to have susceptible individuals rewire their connections away from infected individuals. This more realistic modification may change the size of epidemics. These five processes will be studied using a variety of tools from discrete and continuous probability theory such as the mass transport principal, recursion, couplings, large deviation estimates, and stochastic differential equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
具有随机动力学的相互作用粒子系统是物理和社会科学中建模现象的基础。这样的系统可以用来描述化学反应,以及疾病、信息和物种通过网络的传播。当多个粒子类型被合并时,这些模型通常变得更有意义。例如,著名的第一通道渗滤模型描述了单一物种在环境中的传播;竞争物种的加入丰富了该模型。该项目旨在研究化学反应,流行病爆发和信息传播的着名模型的更现实的变体,以加深我们对跨科学重要现象的理解,并进一步发展有助于解释它们的数学。本课题将考虑五种不同的随机多类型相互作用粒子系统:(1)扩散限制湮灭模型是一种湮灭粒子系统,其中相反类型粒子之间的碰撞导致相互湮灭。粒子具有不同速度的版本很难研究,并且当不同类型的粒子初始平衡时,它们会表现出异常行为。(2)弹道湮灭模型有三种粒子类型,所有的碰撞都会导致湮灭。在不同的制度的极限粒子密度的特点。(3)Chase-Escape模型是一个竞争的随机增长模型,即使在捕食者比被捕食者更适合的情况下,也被证明存在共存相。将调查不同物种共存的环境和适合度的影响。(4)A+B-2A模型描述了一个受感染粒子的增长系统。这个过程最近被推广到连续体,这导致了几个新的问题,在离散和连续概率的交叉点,这将得到解决。(5)最后,经典的易感-感染-移除模型在临界连通性阈值附近的随机图上得到了很好的理解。一个自然的延伸是让易感个体重新连接他们的连接,远离受感染的个体。这种更现实的修改可能会改变流行病的规模。这五个过程将使用离散和连续概率理论的各种工具进行研究,如质量传输原理、递归、耦合、大偏差估计和随机微分方程。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Junge其他文献

Frog model wakeup time on the complete graph
青蛙模型唤醒时间在完整图上
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nikki Cartern;Brittany Dygert;Matthew Junge;Stephen Lacina;Collin Litterell;Austin Stromme;Andrew You
  • 通讯作者:
    Andrew You
Four-parameter coalescing ballistic annihilation
四参数聚结弹道湮灭
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kimberly Affeld;Christian Dean;Matthew Junge;Hanbaek Lyu;Connor Panish;Lily Reeves
  • 通讯作者:
    Lily Reeves

Matthew Junge的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Junge', 18)}}的其他基金

CAREER: Stochastic Spatial Systems
职业:随机空间系统
  • 批准号:
    2238272
  • 财政年份:
    2023
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Continuing Grant
Multitype Particle Systems
多类型粒子系统
  • 批准号:
    2115936
  • 财政年份:
    2021
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Continuing Grant
RAPID: Collaborative Research: Quarantined Networks and the Spread of COVID-19
RAPID:协作研究:隔离网络和 COVID-19 的传播
  • 批准号:
    2028892
  • 财政年份:
    2020
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Standard Grant
Multitype Particle Systems
多类型粒子系统
  • 批准号:
    1855516
  • 财政年份:
    2019
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Continuing Grant

相似国自然基金

环形等离子体中的离子漂移波不稳定性和湍流的保结构Particle-in-Cell模拟
  • 批准号:
    11905220
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于多禁带光子晶体微球构建"Array on One Particle"传感体系
  • 批准号:
    21902147
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
空气污染(主要是diesel exhaust particle,DEP)和支气管哮喘关系的研究
  • 批准号:
    30560052
  • 批准年份:
    2005
  • 资助金额:
    20.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
  • 批准号:
    2340762
  • 财政年份:
    2024
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Continuing Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
  • 批准号:
    24K06843
  • 财政年份:
    2024
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Supersymmetry in the geometry of particle systems
粒子系统几何中的超对称性
  • 批准号:
    23K12983
  • 财政年份:
    2023
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Design and development of new Lipid Nano Particle delivery systems for new RNA-based c therapeutics: A rationally designed chemistry and microfluidics
设计和开发新型脂质纳米粒子递送系统,用于新型基于 RNA 的 c 疗法:合理设计的化学和微流体
  • 批准号:
    2889386
  • 财政年份:
    2023
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Studentship
CENTER FOR COMPLEX PARTICLE SYSTEMS (COMPASS)
复杂粒子系统中心(指南针)
  • 批准号:
    2243104
  • 财政年份:
    2023
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Cooperative Agreement
Particle systems, growth models and their probabilistic structures
粒子系统、生长模型及其概率结构
  • 批准号:
    EP/W032112/1
  • 财政年份:
    2023
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Research Grant
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
  • 批准号:
    2345533
  • 财政年份:
    2023
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Standard Grant
Interacting Particle Systems and Beyond
相互作用的粒子系统及其他
  • 批准号:
    2348756
  • 财政年份:
    2023
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Standard Grant
High-throughput quantification of drug loading into advanced delivery systems at the single particle scale
在单颗粒尺度上对先进递送系统中的药物负载进行高通量定量
  • 批准号:
    2785685
  • 财政年份:
    2023
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Studentship
Many-particle Systems with Singular Interactions: Statistical Mechanics and Mean-field Dynamics
具有奇异相互作用的多粒子系统:统计力学和平均场动力学
  • 批准号:
    2247846
  • 财政年份:
    2023
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了