CDS&E: Collaborative Research: Deep learning enhanced parallel computations of fluid flow around moving boundaries on binarized octrees

CDS

基本信息

  • 批准号:
    1953222
  • 负责人:
  • 金额:
    $ 24.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Computer simulations of heat and fluid flow find applications in many aspects of science and engineering. Notable examples are aerodynamic design of aircrafts and automobiles, and weather forecasting. These simulations are often computationally expensive, and they are performed on supercomputers. Special methods are used to implement the equations of heat and fluid flow as a simulation software. The end goal is to create an accurate computer code that can make optimal use of available computing power. However, this end goal is becoming challenging on modern extreme-scale supercomputers that deploy a large of number of computing processors to work in parallel. Existing algorithms face performance bottlenecks and do not realize the full potential of a modern supercomputer. The project team will develop new algorithms to overcome this performance bottleneck. The successful completion of this award is expected to result in an open-source heat and fluid flow simulation software. The project team will develop educational tutorials to pique the interest of high-school students in new capabilities of computer simulation and machine learning techniques in science and engineering. The technical objective is to enhance parallel performance of simulations of incompressible fluid flow around moving boundaries. A recently developed binarized octree generation technique will be further developed as an open-source parallel adaptive mesh refinement software infrastructure to solve the fluid flow equations on Cartesian domains with deep levels of mesh adaptations. Machine learning techniques and deep neural nets will be adopted in ways to ease potential bottlenecks that are expected to degrade scalability of parallel computations when large number of processors are deployed in simulations. The project team will develop multiple deep learning algorithms such as convolutional neural networks and generative adversarial networks to learn the fluid flow around complex geometries and apply the learning for rapid and accurate field estimation at arbitrary points. To successfully incorporate the effect of boundary conditions at the interface, conditional generative adversarial networks will be trained on different coarse and fine grids to learn the communication pattern among the blocks. This award by the Division of Chemical, Bioengineering, Environmental and Transport Systems within the NSF Directorate of Engineering is jointly supported by the NSF Office of Advanced Cyberinfrastructure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
热和流体流动的计算机模拟在科学和工程的许多方面都有应用。值得注意的例子是飞机和汽车的空气动力学设计以及天气预报。这些模拟通常是计算昂贵的,并且它们是在超级计算机上执行的。采用特殊的方法将热量和流体流动方程实现为仿真软件。最终目标是创建一个精确的计算机代码,可以最佳地利用可用的计算能力。然而,这一最终目标在部署大量计算处理器并行工作的现代极端规模超级计算机上变得具有挑战性。现有的算法面临性能瓶颈,并且没有实现现代超级计算机的全部潜力。项目团队将开发新的算法来克服这一性能瓶颈。该奖项的成功完成预计将导致开源热和流体流动模拟软件。该项目团队将开发教育教程,以激发高中生对科学和工程领域计算机模拟和机器学习技术新功能的兴趣。技术目标是提高不可压缩流体绕动边界流动模拟的并行性能。最近开发的二进制八叉树生成技术将进一步发展为一个开源的并行自适应网格细化软件基础设施,以解决笛卡尔域上的流体流动方程与深层次的网格适应。机器学习技术和深度神经网络将被采用,以缓解潜在的瓶颈,当在模拟中部署大量处理器时,这些瓶颈预计会降低并行计算的可扩展性。该项目团队将开发多种深度学习算法,如卷积神经网络和生成对抗网络,以学习复杂几何形状周围的流体流动,并将学习应用于任意点的快速准确的场估计。为了成功地将边界条件的影响纳入界面,将在不同的粗网格和细网格上训练条件生成对抗网络,以学习块之间的通信模式。该奖项由NSF工程理事会化学、生物工程、环境和运输系统部门颁发,并得到NSF高级网络基础设施办公室的共同支持。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adaptive grey wolf optimizer
  • DOI:
    10.1007/s00521-021-06885-9
  • 发表时间:
    2022-01-11
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Meidani, Kazem;Hemmasian, AmirPouya;Farimani, Amir Barati
  • 通讯作者:
    Farimani, Amir Barati
Mesh deep Q network: A deep reinforcement learning framework for improving meshes in computational fluid dynamics
网格深度 Q 网络:用于改进计算流体动力学中的网格的深度强化学习框架
  • DOI:
    10.1063/5.0138039
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Lorsung, Cooper;Barati Farimani, Amir
  • 通讯作者:
    Barati Farimani, Amir
Deep learning for reduced order modelling and efficient temporal evolution of fluid simulations
  • DOI:
    10.1063/5.0062546
  • 发表时间:
    2021-10-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Pant, Pranshu;Doshi, Ruchit;Barati Farimani, Amir
  • 通讯作者:
    Barati Farimani, Amir
Reduced-order modeling of fluid flows with transformers
  • DOI:
    10.1063/5.0151515
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    AmirPouya Hemmasian;Amir Barati Farimani
  • 通讯作者:
    AmirPouya Hemmasian;Amir Barati Farimani
MAB-OS: Multi-Armed Bandits Metaheuristic Optimizer Selection
  • DOI:
    10.1016/j.asoc.2022.109452
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kazem Meidani;S. Mirjalili;A. Farimani
  • 通讯作者:
    Kazem Meidani;S. Mirjalili;A. Farimani
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amir Barati Farimani其他文献

Predicting change, not states: An alternate framework for neural PDE surrogates
预测变化,而非状态:神经偏微分方程替代模型的另一种框架
Global machine learning model predicting activity level of any GPCRs based on protein structure
  • DOI:
    10.1016/j.bpj.2022.11.1119
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Parisa Mollaei;Amir Barati Farimani
  • 通讯作者:
    Amir Barati Farimani
Unraveling neurotensin receptor 1 conformational landscape with machine learning
  • DOI:
    10.1016/j.bpj.2021.11.1761
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Prakarsh Yadav;Amir Barati Farimani
  • 通讯作者:
    Amir Barati Farimani
Combining Physics-Based and Evolution-Based Methods to Design Antibodies Against an Evolving Virus
  • DOI:
    10.1016/j.bpj.2019.11.2669
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Eric Jakobsson;Amir Barati Farimani;Emad Tajkhorshid;Narayana Aluru
  • 通讯作者:
    Narayana Aluru
High-resolution melt pool thermal imaging for metals additive manufacturing using the two-color method with a color camera
  • DOI:
    10.1016/j.addma.2023.103663
  • 发表时间:
    2023-07-05
  • 期刊:
  • 影响因子:
  • 作者:
    Alexander J. Myers;Guadalupe Quirarte;Francis Ogoke;Brandon M. Lane;Syed Zia Uddin;Amir Barati Farimani;Jack L. Beuth;Jonathan A. Malen
  • 通讯作者:
    Jonathan A. Malen

Amir Barati Farimani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amir Barati Farimani', 18)}}的其他基金

Collaborative Research: Workshop on Exuberance of Machine Learning in Transport Phenomena
合作研究:机器学习在交通现象中的丰富性研讨会
  • 批准号:
    1940200
  • 财政年份:
    2020
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
  • 批准号:
    2335762
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
  • 批准号:
    2336132
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
  • 批准号:
    2338394
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
  • 批准号:
    2325380
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了