High-Dimensional Interaction Detection and Nonparametric Inference

高维交互检测和非参数推理

基本信息

  • 批准号:
    1953356
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Understanding how variables interact with each other is fundamentally important in many scientific discoveries and contemporary applications, especially in areas such as social networks, marketing, medicine, genetics, and cancer studies. Identifying important interactions can also help improve model interpretability and prediction. Yet interaction detection with high-dimensional data poses great challenges since the number of pairwise interactions increases quadratically with the number of covariates and that of higher-order interactions grows even faster. Although there is a growing literature on interaction detection, there is a limited amount of work on the error rate control and inference aspects. Building robust statistical foundations of interaction detection and nonparametric inference, and offering reproducible and scalable algorithms for selecting important interactions can greatly facilitate the use of these much-needed tools in real applications. The common theme underlying this entire project is that of developing statistical methodologies and theories on high-dimensional interaction detection and nonparametric inference with statistical guarantees and improved reproducibility and interpretability.This project has three interrelated aims of timely theoretical and methodological studies on high-dimensional interaction detection and nonparametric inference. The first aim establishes the theoretical foundation of prediction and false sign rate control for interaction detection in ultra-high dimensional regression models. The second aim builds on the recent development of model-X knockoffs and proposes new methods for high-dimensional interaction detection with false discovery rate control and appealing power. The third aim further investigates the nonlinear interactions between a pair of high-dimensional random vectors and develops a new testing procedure for high-dimensional nonparametric inference through the lens of distance correlation. The systematic research program developed in three aims above will help build rigorous statistical foundations of theory and methodologies for high-dimensional data analysis that can guide practitioners and researchers. The investigators also plan to systematically develop tractable and efficient computation algorithms to implement the proposed methods through free software packages, like R and Python, and then make them readily available and publicize them in all relevant fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解变量如何相互作用在许多科学发现和当代应用中至关重要,特别是在社交网络、营销、医学、遗传学和癌症研究等领域。识别重要的相互作用也有助于提高模型的可解释性和预测性。然而,高维数据的交互检测带来了巨大的挑战,因为成对交互的数量随着协变量的数量呈二次方增长,高阶交互的增长甚至更快。虽然有越来越多的文献相互作用检测,有一个有限的工作量的错误率控制和推理方面。建立交互检测和非参数推断的强大统计基础,并提供用于选择重要交互的可再现和可扩展算法,可以极大地促进这些急需的工具在真实的应用中的使用。整个项目的共同主题是发展具有统计保证和改进的可重复性和可解释性的高维交互检测和非参数推断的统计方法和理论。本项目有三个相互关联的目标,即及时对高维交互检测和非参数推断进行理论和方法研究。第一个目标是为超高维回归模型中交互检测的预测和虚警率控制奠定理论基础。第二个目标是建立在最近的发展模型X的仿制品,并提出了新的方法,高维互动检测与错误发现率控制和吸引力。第三个目的是进一步研究了高维随机向量间的非线性相互作用,并通过距离相关的透镜,发展了一种新的高维非参数推断检验方法。基于以上三个目标的系统研究计划将有助于为高维数据分析建立严格的统计理论和方法基础,以指导实践者和研究者。研究人员还计划通过R和Python等免费软件包系统地开发易于处理的高效计算算法,以实现所提出的方法,然后将其随时可用并在所有相关领域进行宣传。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Not Registered? Please Sign Up First: A Randomized Field Experiment on the Ex Ante Registration Request
  • DOI:
    10.1287/isre.2021.0999
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ni Huang;Probal Mojumder;Tianshu Sun;Jinchi Lv;Joseph M. Golden
  • 通讯作者:
    Ni Huang;Probal Mojumder;Tianshu Sun;Jinchi Lv;Joseph M. Golden
DeepLINK: Deep learning inference using knockoffs with applications to genomics
  • DOI:
    10.1073/pnas.2104683118
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zifan Zhu;Yingying Fan;Yinfei Kong;Jinchi Lv;Fengzhu Sun
  • 通讯作者:
    Zifan Zhu;Yingying Fan;Yinfei Kong;Jinchi Lv;Fengzhu Sun
Large-scale model selection in misspecified generalized linear models
  • DOI:
    10.1093/biomet/asab005
  • 发表时间:
    2022-02-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Demirkaya, Emre;Feng, Yang;Lv, Jinchi
  • 通讯作者:
    Lv, Jinchi
SIMPLE: Statistical inference on membership profiles in large networks
简单:对大型网络中的成员资料进行统计推断
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jinchi Lv其他文献

Inference in weak factor models
弱因子模型中的推理
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingying Fan;Jinchi Lv;Mahrad Sharifvaghefi;Yoshimasa Uematsu;Yoshimasa Uematsu;Yoshimasa Uematsu;植松良公;植松良公;植松良公;植松良公;Yoshimasa Uematsu
  • 通讯作者:
    Yoshimasa Uematsu
ST ] 1 1 M ay 2 01 6 Model selection principles in misspecified models †
ST ] 1 1 May 2 01 6 错误指定模型中的模型选择原则 †
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jinchi Lv
  • 通讯作者:
    Jinchi Lv
Asymptotic properties of high-dimensional random forests
高维随机森林的渐近性质
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Chien;Patrick Vossler;Yingying Fan;Jinchi Lv
  • 通讯作者:
    Jinchi Lv
Estimation of weak factor models
弱因子模型的估计
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingying Fan;Jinchi Lv;Mahrad Sharifvaghefi;Yoshimasa Uematsu;Yoshimasa Uematsu;Yoshimasa Uematsu;植松良公;植松良公;植松良公;植松良公;Yoshimasa Uematsu;Yoshimasa Uematsu
  • 通讯作者:
    Yoshimasa Uematsu
Supplementary material to “Panning for gold: Model-X knock-offs for high-dimensional controlled variable selection”
“淘金:用于高维控制变量选择的 Model-X 仿制品”的补充材料
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Candès;Yingying Fan;Lucas Janson;Jinchi Lv
  • 通讯作者:
    Jinchi Lv

Jinchi Lv的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jinchi Lv', 18)}}的其他基金

Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324490
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
CAREER: High Dimensional Variable Selection and Risk Properties
职业:高维变量选择和风险属性
  • 批准号:
    0955316
  • 财政年份:
    2010
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Variable Selection in High Dimensional Feature Space with Applications to Covariance Matrix Estimation and Functional Data Analysis
高维特征空间中的变量选择及其在协方差矩阵估计和函数数据分析中的应用
  • 批准号:
    0806030
  • 财政年份:
    2008
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似国自然基金

基于interaction和backbone的NP类MAS问题解集表示、复杂性统计与高效算法研究
  • 批准号:
    11201019
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
Reality-based Interaction用户界面模型和评估方法研究
  • 批准号:
    61170182
  • 批准年份:
    2011
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

Unraveling the pathogen detection mechanisms of the behavioral immune system through the interaction of visual, olfactory, and tactile senses with disgust.
通过视觉、嗅觉、触觉与厌恶的相互作用,揭示行为免疫系统的病原体检测机制。
  • 批准号:
    23H01057
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: DMS/NIGMS 2: Novel machine-learning framework for AFMscanner in DNA-protein interaction detection
合作研究:DMS/NIGMS 2:用于 DNA-蛋白质相互作用检测的 AFM 扫描仪的新型机器学习框架
  • 批准号:
    10797460
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
Vasvular-Brain Interaction: for Early Detection of Dementia Risk
血管-大脑相互作用:早期发现痴呆风险
  • 批准号:
    21K18299
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Collaborative Research: Axion Resonant InterAction Detection Experiment (ARIADNE) - a Renewal Proposal
合作研究:轴子共振相互作用检测实验(ARIADNE)——更新提案
  • 批准号:
    2111347
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Collaborative Research: Axion Resonant InterAction Detection Experiment (ARIADNE) - a Renewal Proposal
合作研究:轴子共振相互作用检测实验(ARIADNE)——更新提案
  • 批准号:
    2111544
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
RUI: Exploring Halogen Bonding as a Fundamental Interaction Toward the Development of Nanoparticle-Based Screening Methods for Explosive Molecule Detection
RUI:探索卤素键作为一种基本相互作用,以开发基于纳米颗粒的爆炸性分子检测筛选方法
  • 批准号:
    2101010
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Axion Resonant InterAction Detection Experiment (ARIADNE) - a Renewal Proposal
合作研究:轴子共振相互作用检测实验(ARIADNE)——更新提案
  • 批准号:
    2110944
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Development of New methodology for Genome-wide Detection of Multi-contact Interaction between Chromatin Regions in Single Molecular Resolution
开发单分子分辨率全基因组检测染色质区域之间多接触相互作用的新方法
  • 批准号:
    20K21384
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
High-Dimensional Interaction Detection and Nonparametric Inference
高维交互检测和非参数推理
  • 批准号:
    1953293
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Development of a secreting cell detection and collection system to analyze the moment of cell-cell interaction.
开发分泌细胞检测和收集系统来分析细胞与细胞相互作用的时刻。
  • 批准号:
    20H04512
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了