A Robust and Efficient Statistical Framework for Handling Missing-Not-At-Random Data in Patient Reported Outcomes and Beyond
一个强大而高效的统计框架,用于处理患者报告结果及其他方面的非随机缺失数据
基本信息
- 批准号:1953526
- 负责人:
- 金额:$ 59.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The patient-reported outcome (PRO), representing the status of the patient's health that comes directly from the patient without interpretation by the clinician or anyone else, has the unique feature of describing health status from the viewpoint of the patient; therefore, the PRO research holds great promise for informed clinical and policy decision-making, as well as for improving the quality and efficiency of healthcare. However, the quality and value of PRO is contingent on a number of factors, and one of them is the missing-not-at-random (MNAR) issue. For instance, patients might fail to fill in a depression survey because of their level of depression, or patients who are sicker may be less likely to complete a quality-of-life questionnaire. In general, these PROs are missing due to the patient's declining health status, but the extent of decline is not known because it is not observed; hence, these missing data are informative and are MNAR. Similar situations also appear in large-scale health surveys and electronic health records database. In this project, the PIs will study statistical methodology and computational algorithm for the MNAR issue in PRO as well as in other similar situations. The research product has the potential to be applied to various studies, such as Alzheimer's disease, mental health disorders, orthopedics, and pain research. The PIs will also engage in education at both disciplinary and interdisciplinary levels, with beneficiaries ranging from local high school students and undergraduates, to master and PhD students, and to biomedical investigators. The project will also provide research opportunities for postdoctoral scholars. The overarching goal of this project is to establish a groundbreaking and translational statistical methodology framework including robust methods as well as efficient estimators, where the assumption on the missing data mechanism is imposed at a minimum level hence the developed methods can be applied with the largest flexibility. Motivated by the well-recognized fact that there is no adequate way to test the correctness of the missing data mechanism, the PIs will adopt the shadow variable approach to achieve the model identification and essentially make no further assumptions on the mechanism, thereby provide largest possible protection to model misspecification. The methodology is robust against the mechanism model misspecification by leveraging the model-based likelihood and its associated semiparametric structure. The statistical methods developed in this project will be implemented into efficient R packages and user-friendly interfaces for researchers whose primary goal is the analysis of missing data, especially MNAR data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
患者报告的结果(PRO)代表患者的健康状况,直接来自患者,无需临床医生或其他任何人的解释,具有从患者的角度描述健康状况的独特功能;因此,PRO研究为明智的临床和政策决策以及提高医疗保健的质量和效率带来了巨大的希望。然而,PRO的质量和价值取决于许多因素,其中之一是MNAR问题。例如,患者可能因为抑郁程度而无法填写抑郁症调查,或者病情较重的患者可能不太可能完成生活质量问卷。一般而言,由于患者健康状况下降,这些PRO缺失,但由于未观察到下降程度,因此不知道下降程度;因此,这些缺失数据具有信息性,是MNAR。类似情况也出现在大规模健康调查和电子健康档案数据库中。 在本项目中,PI将研究PRO以及其他类似情况下MNAR问题的统计方法和计算算法。该研究产品有可能应用于各种研究,如阿尔茨海默病,精神健康障碍,骨科和疼痛研究。PI还将参与学科和跨学科层面的教育,受益者包括当地高中生和本科生,硕士和博士生以及生物医学研究人员。该项目还将为博士后学者提供研究机会。该项目的总体目标是建立一个突破性的翻译统计方法框架,包括稳健的方法和有效的估计,其中对缺失数据机制的假设被施加在最低水平,因此开发的方法可以以最大的灵活性应用。由于没有足够的方法来测试缺失数据机制的正确性,PI将采用影子变量方法来实现模型识别,并且基本上不对机制进行进一步假设,从而为模型错误提供最大可能的保护。该方法是强大的机制模型误指定利用基于模型的可能性及其相关的半参数结构。该项目中开发的统计方法将被应用到高效的R软件包和用户友好的界面中,以供研究人员使用,他们的主要目标是分析缺失数据,特别是MNAR数据。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiwei Zhao其他文献
Establishment of cDNA-AFLP technology system and stoneless gene difference expression in Ziziphus jujuba Mill.
大枣cDNA-AFLP技术体系的建立及无核基因差异表达
- DOI:
10.1007/s11703-010-1034-6 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
B. Han;R. Bai;Li Li;Lisha Zhang;Chuan;Jiwei Zhao;Jinxin Wang;Jian - 通讯作者:
Jian
Multiple testing for a combination drug with two study endpoints
对具有两个研究终点的组合药物进行多重测试
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:2
- 作者:
J. Shao;Sheng Zhang;Jiwei Zhao;A. Chiang - 通讯作者:
A. Chiang
Patient Outcomes After Observation Versus Debridement of Unstable Chondral Lesions During Partial Meniscectomy: The Chondral Lesions And Meniscus Procedures (ChAMP) Randomized Controlled Trial
部分半月板切除术期间观察与不稳定软骨病变清创后的患者结果:软骨病变和半月板手术 (ChAMP) 随机对照试验
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Leslie J. Bisson;Melissa A. Kluczynski;W. Wind;Marc S. Fineberg;Geoffrey A. Bernas;M. Rauh;J. Marzo;Zehua Zhou;Jiwei Zhao - 通讯作者:
Jiwei Zhao
Human ocular thelaziosis—a zoonosis of the eye
人眼吸吮线虫病——一种眼部人畜共患病
- DOI:
10.1016/s1473-3099(22)00799-x - 发表时间:
2023-03-01 - 期刊:
- 影响因子:31.000
- 作者:
Yu Cao;Wei Pan;Yan Shen;Jiwei Zhao;Jinlin Liu - 通讯作者:
Jinlin Liu
ReTaSA: A Nonparametric Functional Estimation Approach for Addressing Continuous Target Shift
ReTaSA:一种解决连续目标偏移的非参数函数估计方法
- DOI:
10.48550/arxiv.2401.16410 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hwanwoo Kim;Xin Zhang;Jiwei Zhao;Qinglong Tian - 通讯作者:
Qinglong Tian
Jiwei Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiwei Zhao', 18)}}的其他基金
Semiparametric Techniques for Data Exploitation across Heterogeneous Populations
跨异质群体数据开发的半参数技术
- 批准号:
2310942 - 财政年份:2023
- 资助金额:
$ 59.97万 - 项目类别:
Standard Grant
A Robust and Efficient Statistical Framework for Handling Missing-Not-At-Random Data in Patient Reported Outcomes and Beyond
一个强大而高效的统计框架,用于处理患者报告结果及其他方面的非随机缺失数据
- 批准号:
2122074 - 财政年份:2021
- 资助金额:
$ 59.97万 - 项目类别:
Continuing Grant
相似海外基金
Robust and efficient statistical learning algorithms with applications in actuarial science
稳健高效的统计学习算法在精算科学中的应用
- 批准号:
RGPIN-2020-07064 - 财政年份:2022
- 资助金额:
$ 59.97万 - 项目类别:
Discovery Grants Program - Individual
Robust and Efficient Statistical Inference in Large Scale Semi-Supervised Settings
大规模半监督环境中稳健且高效的统计推断
- 批准号:
2113768 - 财政年份:2021
- 资助金额:
$ 59.97万 - 项目类别:
Continuing Grant
Robust and efficient statistical learning algorithms with applications in actuarial science
稳健高效的统计学习算法在精算科学中的应用
- 批准号:
RGPIN-2020-07064 - 财政年份:2021
- 资助金额:
$ 59.97万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Robust and Efficient Algorithms for Statistical Estimation and Inference
职业:用于统计估计和推理的稳健且高效的算法
- 批准号:
2045068 - 财政年份:2021
- 资助金额:
$ 59.97万 - 项目类别:
Continuing Grant
A Robust and Efficient Statistical Framework for Handling Missing-Not-At-Random Data in Patient Reported Outcomes and Beyond
一个强大而高效的统计框架,用于处理患者报告结果及其他方面的非随机缺失数据
- 批准号:
2122074 - 财政年份:2021
- 资助金额:
$ 59.97万 - 项目类别:
Continuing Grant
Robust and efficient statistical learning algorithms with applications in actuarial science
稳健高效的统计学习算法在精算科学中的应用
- 批准号:
RGPIN-2020-07064 - 财政年份:2020
- 资助金额:
$ 59.97万 - 项目类别:
Discovery Grants Program - Individual
CRII: III: Efficient and Robust Statistical Estimation from Nonlinear Compressed Measurements
CRII:III:通过非线性压缩测量进行高效且稳健的统计估计
- 批准号:
1948133 - 财政年份:2020
- 资助金额:
$ 59.97万 - 项目类别:
Standard Grant
Robust and efficient statistical learning algorithms with applications in actuarial science
稳健高效的统计学习算法在精算科学中的应用
- 批准号:
DGECR-2020-00372 - 财政年份:2020
- 资助金额:
$ 59.97万 - 项目类别:
Discovery Launch Supplement
Robust and efficient statistical inference methods for genomics
稳健且高效的基因组学统计推断方法
- 批准号:
10308395 - 财政年份:2019
- 资助金额:
$ 59.97万 - 项目类别:
Robust and efficient statistical inference methods for genomics
稳健且高效的基因组学统计推断方法
- 批准号:
10526429 - 财政年份:2019
- 资助金额:
$ 59.97万 - 项目类别: