CRII: III: Efficient and Robust Statistical Estimation from Nonlinear Compressed Measurements
CRII:III:通过非线性压缩测量进行高效且稳健的统计估计
基本信息
- 批准号:1948133
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project advances the nation's development in science and engineering by providing new theory and algorithms for knowledge discovery from high-dimensional data. High-dimensional estimation, a computational procedure that extracts the most useful information from a large pool of redundant or irrelevant features, has played fundamental roles in various areas such as medical imaging, biology, and climatology. However, the well-established estimation schemes degrade dramatically when the data have complex structures, or when they are contaminated due to hardware failures, programming errors, or cyber-attacks. The goal of this project is to significantly broaden the understanding of the fundamental limits of learning algorithms against different types of structures and data errors, to offer a complete guideline for robust algorithmic design, and to highlight the extent to which an intelligent system behaves reliably and consistently. Outputs, such as theoretical results, algorithm implementation, and reusable empirical data, are designed to support a wide range of researchers in machine learning, high-dimensional statistics, signal processing, biology, and other related fields.The project will be carried out by investigating the interplay of high-dimensional statistics, optimization, and learning theory. The investigator will develop a unified framework for nonlinear estimation in the high-dimensional regime, which uncovers parameter estimation from quantized measurements and learning with nonlinear activation functions in deep neural networks. In particular, to account for the nonlinear and possibly nonconvex nature, the investigator will develop efficient constrained optimization algorithms by leveraging inherent geometric structures into algorithmic design and theoretical analysis. Based on the unified framework and the established generic results, the investigator will revisit an ensemble of heuristic algorithms and will provide a theoretical justification on when and why they succeed in practice. Lastly, the investigator will design algorithms that are robust to various types of data corruption, such as adversarial noise, outlier, and malicious noise. To obtain a near-optimal dependence on the noise rate and data dimension in the sample complexity, a series of new statistical results will be established by leveraging tools from, and enriching theory in learning theory and robust statistics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目通过为从高维数据中发现知识提供新的理论和算法,推动了国家在科学和工程方面的发展。高维估计是一种从大量冗余或无关特征中提取最有用信息的计算过程,在医学成像、生物学和气候学等领域发挥了重要作用。然而,当数据具有复杂的结构时,或者当它们因硬件故障、编程错误或网络攻击而受到污染时,成熟的估计方案会显著降级。该项目的目标是显著扩大对学习算法针对不同类型结构和数据错误的基本限制的理解,为稳健的算法设计提供完整的指导方针,并突出智能系统可靠和一致的运行程度。理论结果、算法实现和可重复使用的经验数据等输出,旨在支持机器学习、高维统计、信号处理、生物学和其他相关领域的广泛研究人员。该项目将通过调查高维统计、优化和学习理论的相互作用来实施。研究人员将开发一个在高维区域进行非线性估计的统一框架,该框架揭示了从量化测量中进行参数估计以及在深层神经网络中使用非线性激活函数进行学习。特别是,为了考虑到非线性和可能的非凸性,研究者将通过将固有的几何结构利用到算法设计和理论分析中来开发高效的约束优化算法。基于统一的框架和已建立的通用结果,研究人员将重新审查一系列启发式算法,并将就它们何时以及为什么在实践中成功提供理论上的理由。最后,调查者将设计对各种类型的数据损坏具有健壮性的算法,例如对抗性噪声、离群值和恶意噪声。为了在样本复杂性中获得对噪声率和数据维度的近乎最佳的依赖,将通过利用学习理论和稳健统计中的工具并丰富理论来建立一系列新的统计结果。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient active learning of sparse halfspaces with arbitrary bounded noise
- DOI:
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Chicheng Zhang;Jie Shen;Pranjal Awasthi
- 通讯作者:Chicheng Zhang;Jie Shen;Pranjal Awasthi
Semi-Verified PAC Learning from the Crowd
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Shiwei Zeng;Jie Shen
- 通讯作者:Shiwei Zeng;Jie Shen
Efficient PAC Learning from the Crowd with Pairwise Comparisons
- DOI:
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Shiwei Zeng;Jie Shen
- 通讯作者:Shiwei Zeng;Jie Shen
Residual-Based Sampling for Online Outlier-Robust PCA
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Tianhao Zhu;Jie Shen
- 通讯作者:Tianhao Zhu;Jie Shen
Fast spectral analysis for approximate nearest neighbor search
- DOI:10.1007/s10994-021-06124-1
- 发表时间:2022-01
- 期刊:
- 影响因子:7.5
- 作者:Jing Wang;Jie Shen
- 通讯作者:Jing Wang;Jie Shen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jie Shen其他文献
Polysaccharide fromflammuliana velutipes improves colitis via regulation of colonic microbial dysbiosis and inflammatory responses
金针菇多糖通过调节结肠微生物失调和炎症反应来改善结肠炎
- DOI:
10.1016/j.ijbiomac.2020.02.044 - 发表时间:
2020 - 期刊:
- 影响因子:8.2
- 作者:
Rongjun Zhang;Sijie Yuan;Jufeng Ye;Xiangdong Wang;Jie Shen;Miaomiao Yuan;Wenzhen Liao - 通讯作者:
Wenzhen Liao
Invariant-Based Augmented Reality on Mobile Phones
手机上基于不变的增强现实
- DOI:
10.4304/jmm.5.6.588-595 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Jie Shen;Lei Luo;Xiaoyu Zheng - 通讯作者:
Xiaoyu Zheng
Bacillus arachidis sp. nov., Isolated from Peanut Rhizosphere Soil
花生芽孢杆菌
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:2.6
- 作者:
Yong Chen;Yang Li;Jie Shen;Qingxue Liu;Yuhang Liu;Yaqi Chu;Zijun Xiao - 通讯作者:
Zijun Xiao
Hopf Bifurcation of the Unsteady Regularized Driven CavityFlowJie ShenDepartment of Mathematics
非定常正则驱动腔流的Hopf分岔沉杰数学系
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Jie Shen - 通讯作者:
Jie Shen
On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations1
非定常纳维-斯托克斯方程的压力稳定法和投影法1
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Jie Shen - 通讯作者:
Jie Shen
Jie Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jie Shen', 18)}}的其他基金
CAREER: Robustness, Active Learning, Sparsity, and Fairness in Classification
职业:分类中的鲁棒性、主动学习、稀疏性和公平性
- 批准号:
2239376 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Design and Analysis of Highly Efficient Algorithms for Complex Nonlinear Systems
复杂非线性系统高效算法的设计与分析
- 批准号:
2012585 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
International Conference on Current Trends and Challenges in Numerical Solution of Partial Differential Equations
偏微分方程数值解的当前趋势和挑战国际会议
- 批准号:
1722535 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: Efficient, Stable and Accurate Numerical Algorithms for a class of Gradient Flow Systems and their Applications
合作研究:一类梯度流系统高效、稳定、准确的数值算法及其应用
- 批准号:
1720440 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Fast spectral methods and their applications
快速光谱方法及其应用
- 批准号:
1620262 - 财政年份:2016
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
I-Corps: Cell Failure Analysis of Lithium-ion Batteries
I-Corps:锂离子电池的电池失效分析
- 批准号:
1445355 - 财政年份:2014
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: Phase-field models, algorithms and simulations for multiphase complex fluids
合作研究:多相复杂流体的相场模型、算法和模拟
- 批准号:
1419053 - 财政年份:2014
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Fast Spectral Methods and their Applications
快速谱方法及其应用
- 批准号:
1217066 - 财政年份:2012
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Fast Spectral-Galerkin Methods and their Applications
快速谱伽辽金方法及其应用
- 批准号:
0915066 - 财政年份:2009
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
MRI: Acquisition of an X-Ray Micro-Computed Tomography System for Evaluating Crack Evolution and Failure Characterization of Engineering Materials
MRI:获取 X 射线微计算机断层扫描系统,用于评估工程材料的裂纹演化和失效特征
- 批准号:
0721625 - 财政年份:2007
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
全钒液流电池负极V(II)/V(III)电化学氧化还原的催化机理研究
- 批准号:2025JJ50094
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
吡咯烷生物碱所致肝窦阻塞综合征III区肝损伤的新机制——局部氨代谢紊乱
- 批准号:JCZRYB202500652
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硅基III-V族亚微米线激光器的光场模式调控与耦合机理研究
- 批准号:JCZRQN202501004
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
MXene/nZVI@FH材料微域层界面调控水中砷(III)氧化迁移机制
- 批准号:2025JJ50319
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HOXC8/OPN/CD44/EGFR轴介导的奥沙利铂耐药性在III期右半结肠癌耐药进展中的研究
- 批准号:2025JJ50694
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI结合超声原始射频信号评估Bethesda III/IV类甲状腺肿瘤包膜和血管侵犯研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硫化砷靶向VPS4B-ESCRT-III调控自噬溶酶体通路逆转三阴性乳腺癌顺铂耐药性的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
ASPGR与MRC2双受体介导铱(III)配合物
脂质体抗肝肿瘤研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
Ap-Exo III 联合模式识别构建降尿酸药
物筛选新方法的研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
经关节突截骨矫治III期Kummell病临床有效性分析
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311596 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311598 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: III: Towards Effective and Efficient City-scale Traffic Reconstruction
CRII:III:迈向有效和高效的城市规模交通重建
- 批准号:
2412340 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311597 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
III: Small: A New Machine Learning Paradigm Towards Effective yet Efficient Foundation Graph Learning Models
III:小型:一种新的机器学习范式,实现有效且高效的基础图学习模型
- 批准号:
2321504 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CAREER: Engineering Ultra-Wide Bandgap III-Nitride Devices for Highly Efficient and Robust Electronics
职业:设计超宽带隙 III 族氮化物器件,实现高效、稳健的电子产品
- 批准号:
2145340 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
CRII: III: Towards Effective and Efficient City-scale Traffic Reconstruction
CRII:III:迈向有效和高效的城市规模交通重建
- 批准号:
2153426 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Cost-Efficient Sampling and Estimation from Large-Scale Networks
III:小型:协作研究:大规模网络的经济高效采样和估计
- 批准号:
2209921 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Porous germanium Efficient Epitaxial LayEr Release (PEELER) for low cost high performance III-V solar cells
用于低成本高性能 III-V 太阳能电池的多孔锗高效外延层释放 (PEELER)
- 批准号:
537960-2018 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Collaborative Research and Development Grants
High efficient III-V on Silicon Energy Harvesting devices for low cost battery-free IoT applications
适用于低成本无电池物联网应用的高效 III-V 硅能量收集设备
- 批准号:
46788 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Study