Robust and efficient statistical learning algorithms with applications in actuarial science

稳健高效的统计学习算法在精算科学中的应用

基本信息

  • 批准号:
    RGPIN-2020-07064
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The big data era represents an opportunity for statistical methods to shine, through applications relevant to a wide spectrum of fields, including actuarial science. In order to seize and make the most out of this opportunity, researchers and practitioners must, however, effectively manage the challenges that big data pose. Firstly, quantity surely does not imply quality, and data are no exception to this rule. Identifying trends in poor quality data with gross errors is difficult. Methods that are robust against outliers help in this task. One of my research goals is to introduce robust Bayesian models of practical relevance for actuaries. Generalised linear models (GLMs) are, for instance, ubiquitous in general insurance claim modelling. Robust GLMs are a class of models to be proposed. They will have the remarkable characteristic of producing results based solely on the nonoutliers in the limit when the outliers move further and further away, while performing similarly to the traditional models in the absence of outliers. The impact of the outliers in fact gradually vanishes, reflecting that at the beginning when they are not so far from the bulk of the data, there is an uncertainty about whether they really are outliers or not. Methods automatically dealing with this uncertainty are particularly valuable in high-dimensional and variable selection problems. Secondly, proposing complex models handling gross errors is not enough. The numerical methods required for inference must scale with the model complexity and data size to ensure that the statistical procedures are implementable. For this purpose, I will propose automatic nonreversible jump algorithms. These are Markov chain Monte Carlo (MCMC) methods used for approximating integrals with respect to joint posterior distributions of models and their parameters, which allows simultaneous Bayesian variable selection and parameter estimation. Nonreversible methods are known for their better scalability in typical cases, comparatively to their reversible counterparts. This is due to Markov chains with paths characterised by persistent movement that allow to traverse the state space more quickly and prevent the diffusive behaviour often exhibited by reversible schemes. This translates into less autocorrelations, which implies less iterations to obtain independent samples from the posterior distributions. The results are thus closer to regular Monte Carlo, which is the ultimate MCMC goal. Robust statistical models together with automatic and efficient numerical methods for automated inference result in: robust and efficient statistical learning algorithms. The advantage of statistical procedures (over typical machine learning algorithms for instance) is that they allow risk and uncertainty quantification. This quantification is at the core of actuaries' role and allows to issue statements containing rich probabilistic descriptions about the capacity of insurance firms to pay for future claims.
大数据时代为统计方法提供了一个大放异彩的机会,通过与包括精算科学在内的广泛领域相关的应用。然而,为了抓住并充分利用这一机会,研究人员和从业人员必须有效地管理大数据带来的挑战。 首先,数量并不意味着质量,数据也不例外。很难确定存在严重误差的低质量数据的趋势。对离群值具有鲁棒性的方法有助于完成这项任务。我的研究目标之一是介绍稳健的贝叶斯模型的精算师的实际相关性。例如,广义线性模型(GLM)在一般保险索赔建模中无处不在。鲁棒GLM是要提出的一类模型。当异常值越来越远时,它们将具有仅基于极限中的非异常值产生结果的显著特性,而在没有异常值的情况下,它们的表现与传统模型相似。事实上,异常值的影响逐渐消失,这反映出在开始时,当它们离大部分数据不远时,它们是否真的是异常值是不确定的。自动处理这种不确定性的方法在高维和变量选择问题中特别有价值。 其次,提出处理粗差的复杂模型是不够的。推理所需的数值方法必须与模型复杂性和数据大小成比例,以确保统计程序是可实施的。为此,我将提出自动不可逆跳转算法。这些是马尔可夫链蒙特卡罗(MCMC)方法,用于近似积分相对于联合后验分布的模型及其参数,它允许同时贝叶斯变量选择和参数估计。与可逆方法相比,不可逆方法在典型情况下具有更好的可扩展性。这是由于马尔可夫链的路径特征在于持续运动,允许更快地遍历状态空间,并防止可逆方案经常表现出的扩散行为。这转化为更少的自相关性,这意味着从后验分布中获得独立样本的迭代次数更少。因此,结果更接近常规蒙特卡罗,这是MCMC的最终目标。 强大的统计模型与自动和有效的数值方法一起用于自动推理,导致:强大和有效的统计学习算法。统计过程的优点(例如,与典型的机器学习算法相比)是它们允许风险和不确定性量化。这种量化是精算师作用的核心,可以发布包含有关保险公司支付未来索赔能力的丰富概率描述的报表。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gagnon, Philippe其他文献

Informed reversible jump algorithms
  • DOI:
    10.1214/21-ejs1877
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Gagnon, Philippe
  • 通讯作者:
    Gagnon, Philippe
A New Bayesian Approach to Robustness Against Outliers in Linear Regression
  • DOI:
    10.1214/19-ba1157
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Gagnon, Philippe;Desgagne, Alain;Bedard, Mylene
  • 通讯作者:
    Bedard, Mylene
Walking exercise response to bronchodilation in mild COPD: A randomized trial
  • DOI:
    10.1016/j.rmed.2012.08.021
  • 发表时间:
    2012-12-01
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Gagnon, Philippe;Saey, Didier;Maltais, Francois
  • 通讯作者:
    Maltais, Francois
Distal Leg Muscle Function in Patients with COPD
Impact of preinduced quadriceps fatigue on exercise response in chronic obstructive pulmonary disease and healthy subjects
  • DOI:
    10.1152/japplphysiol.91546.2008
  • 发表时间:
    2009-09-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Gagnon, Philippe;Saey, Didier;Maltais, Francois
  • 通讯作者:
    Maltais, Francois

Gagnon, Philippe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gagnon, Philippe', 18)}}的其他基金

Robust and efficient statistical learning algorithms with applications in actuarial science
稳健高效的统计学习算法在精算科学中的应用
  • 批准号:
    RGPIN-2020-07064
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Robust and efficient statistical learning algorithms with applications in actuarial science
稳健高效的统计学习算法在精算科学中的应用
  • 批准号:
    RGPIN-2020-07064
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Microscopie RESOLFT assitée par l'apprentissage automatique
自动学徒辅助显微镜 RESOLFT
  • 批准号:
    562876-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    University Undergraduate Student Research Awards
Robust and efficient statistical learning algorithms with applications in actuarial science
稳健高效的统计学习算法在精算科学中的应用
  • 批准号:
    DGECR-2020-00372
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Launch Supplement
Électonique flexible à base de réseaux de nanotibes de carbone double-parois
弹性柔性 à 碳双帕罗纳米碳纤维底座
  • 批准号:
    393782-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Production of titanium powder and hydrogen storage
钛粉生产及储氢
  • 批准号:
    408021-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Evaluation des propriétés mécaniques de membranes de nanotubes de carbone
碳纳米管膜特性评估
  • 批准号:
    366026-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 1.31万
  • 项目类别:
    University Undergraduate Student Research Awards

相似国自然基金

固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
  • 批准号:
    60973026
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Developing a Robust and Efficient Strategy for Censored Covariates to Improve Clinical Trial Design for Neurodegenerative Diseases
为删失协变量制定稳健有效的策略,以改进神经退行性疾病的临床试验设计
  • 批准号:
    10634043
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Robust and efficient statistical learning algorithms with applications in actuarial science
稳健高效的统计学习算法在精算科学中的应用
  • 批准号:
    RGPIN-2020-07064
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Robust and Efficient Statistical Inference in Large Scale Semi-Supervised Settings
大规模半监督环境中稳健且高效的统计推断
  • 批准号:
    2113768
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Continuing Grant
Robust and efficient statistical learning algorithms with applications in actuarial science
稳健高效的统计学习算法在精算科学中的应用
  • 批准号:
    RGPIN-2020-07064
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Robust and Efficient Algorithms for Statistical Estimation and Inference
职业:用于统计估计和推理的稳健且高效的算法
  • 批准号:
    2045068
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Continuing Grant
A Robust and Efficient Statistical Framework for Handling Missing-Not-At-Random Data in Patient Reported Outcomes and Beyond
一个强大而高效的统计框架,用于处理患者报告结果及其他方面的非随机缺失数据
  • 批准号:
    2122074
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Continuing Grant
Robust methods for missing data in electronic health records-based studies
基于电子健康记录的研究中缺失数据的稳健方法
  • 批准号:
    10589133
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
A Robust and Efficient Statistical Framework for Handling Missing-Not-At-Random Data in Patient Reported Outcomes and Beyond
一个强大而高效的统计框架,用于处理患者报告结果及其他方面的非随机缺失数据
  • 批准号:
    1953526
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Continuing Grant
Robust and efficient statistical learning algorithms with applications in actuarial science
稳健高效的统计学习算法在精算科学中的应用
  • 批准号:
    DGECR-2020-00372
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Launch Supplement
CRII: III: Efficient and Robust Statistical Estimation from Nonlinear Compressed Measurements
CRII:III:通过非线性压缩测量进行高效且稳健的统计估计
  • 批准号:
    1948133
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了