CAREER: Sparse Associative Deep Learning using Neural Mimicry in Multimodal Machine Learning

职业:在多模态机器学习中使用神经拟态的稀疏关联深度学习

基本信息

  • 批准号:
    1954364
  • 负责人:
  • 金额:
    $ 46.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Artificial intelligence has made incredible progress in the past several years. AI technology is now successfully being used in voice assistants, photo recognition technology, chatbots, search engines, and self-driving cars. While current AI is very good at matching specific patterns for specific tasks, research has shown that it cannot generalize to different tasks and has no real understanding of what it is doing. Thus, radical new directions need to be explored to achieve a truly intelligent machine. This project explores a new kind of AI framework, one that mimics how the human brain senses and understands the world. This new AI system learns much like an infant would, by simply observing the world and learning through exploration. This project also utilizes a new type of computer chip that communicates information in the same way that neurons in the brain communicate. Ultimately, the project will create a new kind of AI by mimicking certain functions of the human brain. This research can inform new methods and approaches to creating an AI that better understands the world in which we live. Furthermore, the project attracts and supports the education of students interested in the interdisciplinary field of human and machine intelligence.This project develops a new multimodal machine learning paradigm that is principally different from the traditional deep learning methods used in the state-of-the-art today. This research is inspired by breakthroughs in computational and theoretical neuroscience that incorporate ideas not explored by current feed-forward deep learning architectures. Rather than using massive labeled datasets, the algorithms learn much like an infant learns, i.e., by unsupervised observation and exploration of the world through different sensory inputs. The project addresses three primary research challenges: (1) the algorithms will robustly learn the structure of the world, (2) the model will learn heterogenous associations from repeated stimuli, and (3) given the same fundamental architecture, the model will learn how to predict the future. Furthermore, the framework described in the project mimics the hierarchical architecture, sparsity, top-down, and feedback functions of the mammalian brain. This model is built upon recent advances in neuromorphic software and hardware that enhance the functionality, energy use, and speed of the underlying algorithms. Given that neuromorphic approaches are under active development, this project has the unique opportunity to provide algorithms and functionality in software and silicon.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能在过去几年里取得了令人难以置信的进步。人工智能技术现在正成功地应用于语音助手、照片识别技术、聊天机器人、搜索引擎和自动驾驶汽车。虽然目前的人工智能非常擅长为特定的任务匹配特定的模式,但研究表明,它不能概括到不同的任务,也没有真正理解它在做什么。因此,需要探索激进的新方向,以实现真正的智能机器。这个项目探索了一种新型的人工智能框架,一种模仿人脑如何感知和理解世界的框架。这个新的人工智能系统的学习方式很像婴儿,只需观察世界,在探索中学习。该项目还利用了一种新型的计算机芯片,它的信息交流方式与大脑中神经元的交流方式相同。最终,该项目将通过模仿人脑的某些功能来创造一种新型的人工智能。这项研究可以为创造更好地理解我们生活的世界的人工智能提供新的方法和途径。此外,该项目还吸引和支持了对人机智能跨学科领域感兴趣的学生的教育。该项目开发了一种新的多模式机器学习范式,与当今最先进的传统深度学习方法主要不同。这项研究的灵感来自于计算和理论神经科学的突破,这些突破融合了当前前馈深度学习体系结构没有探索的想法。这些算法不是使用大量的标记数据集,而是像婴儿学习一样学习,即通过不同的感官输入进行无监督的观察和对世界的探索。该项目解决了三个主要的研究挑战:(1)算法将稳健地学习世界的结构,(2)模型将从重复刺激中学习异质关联,(3)在相同的基本架构下,模型将学习如何预测未来。此外,该项目中描述的框架模拟了哺乳动物大脑的分层结构、稀疏性、自上而下和反馈功能。该模型建立在神经形态软件和硬件的最新进展的基础上,这些软件和硬件增强了基本算法的功能、能量使用和速度。鉴于神经形态方法正在积极开发中,该项目有独特的机会在软件和硅片中提供算法和功能。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling Biological Immunity to Adversarial Examples
Spatiotemporal Sequence Memory for Prediction using Deep Sparse Coding
使用深度稀疏编码进行预测的时空序列内存
Information Graphic Summarization using a Collection of Multimodal Deep Neural Networks
使用多模态深度神经网络集合进行信息图形摘要
A Neuromorphic Sparse Coding Defense to Adversarial Images
针对对抗性图像的神经形态稀疏编码防御
Distributional Semantics of Line Charts for Trend Classification
趋势分类折线图的分布语义
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward Kim其他文献

Managing the Clinical Consequences of Psychiatric Illness and Antipsychotic Treatment: A Discussion of Obesity, Diabetes, and Hyperprolactinemia
管理精神疾病和抗精神病药物治疗的临床后果:肥胖、糖尿病和高催乳素血症的讨论
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Betty Vreeland;Edward Kim
  • 通讯作者:
    Edward Kim
ARCH-COMP21 Category Report: Continuous and Hybrid Systems with Nonlinear Dynamics
ARCH-COMP21 类别报告:具有非线性动力学的连续和混合系统
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Luca Geretti;Julien Alexandre Dit Sandretto;Matthias Althoff;Luis Benet;Alexandre Chapoutot;Pieter Collins;Parasara Sridhar Duggirala;M. Forets;Edward Kim;Uziel Linares;David P. Sanders;Christian Schilling;Mark Wetzlinger
  • 通讯作者:
    Mark Wetzlinger
AIM: Approximate Intelligent Matching for Time Series Data
AIM:时间序列数据的近似智能匹配
Excimer Laser Trabeculostomy (ELT): An Effective MIGS Procedure for Open-Angle Glaucoma
准分子激光小梁造口术 (ELT):治疗开角型青光眼的有效 MIGS 手术
  • DOI:
    10.1007/978-1-4614-8348-9_8
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    M. Berlin;M. Töteberg;Edward Kim;Iris Vuong;U. Giers
  • 通讯作者:
    U. Giers
Divalproex in the management of neuropsychiatric complications of remote acquired brain injury.
双丙戊酸钠治疗远端获得性脑损伤的神经精神并发症。

Edward Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward Kim', 18)}}的其他基金

CAREER: Sparse Associative Deep Learning using Neural Mimicry in Multimodal Machine Learning
职业:在多模态机器学习中使用神经拟态的稀疏关联深度学习
  • 批准号:
    1846023
  • 财政年份:
    2019
  • 资助金额:
    $ 46.57万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于Sparse-Land模型的SAR图像噪声抑制与分割
  • 批准号:
    60971128
  • 批准年份:
    2009
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Compiler and Runtime Support for Sampled Sparse Computations on Heterogeneous Systems
职业:异构系统上采样稀疏计算的编译器和运行时支持
  • 批准号:
    2338144
  • 财政年份:
    2024
  • 资助金额:
    $ 46.57万
  • 项目类别:
    Continuing Grant
The Global Structure of Sparse Networks
稀疏网络的全局结构
  • 批准号:
    DP240100198
  • 财政年份:
    2024
  • 资助金额:
    $ 46.57万
  • 项目类别:
    Discovery Projects
ERI: AI-Enhanced Dynamic Interference Suppression in Cognitive Sensing with Reconfigurable Sparse Arrays
ERI:利用可重构稀疏阵列在认知传感中进行人工智能增强型动态干扰抑制
  • 批准号:
    2347220
  • 财政年份:
    2024
  • 资助金额:
    $ 46.57万
  • 项目类别:
    Standard Grant
Creating digital twins of flows from noisy and sparse flow-MRI data
从嘈杂和稀疏的流 MRI 数据创建流的数字孪生
  • 批准号:
    EP/X028232/1
  • 财政年份:
    2023
  • 资助金额:
    $ 46.57万
  • 项目类别:
    Fellowship
Inverting turbulence: flow patterns and parameters from sparse data
反演湍流:来自稀疏数据的流动模式和参数
  • 批准号:
    EP/X017273/1
  • 财政年份:
    2023
  • 资助金额:
    $ 46.57万
  • 项目类别:
    Research Grant
CIF:Small:Learning Sparse Vector and Matrix Graphs from Time-Dependent Data
CIF:小:从瞬态数据中学习稀疏向量和矩阵图
  • 批准号:
    2308473
  • 财政年份:
    2023
  • 资助金额:
    $ 46.57万
  • 项目类别:
    Standard Grant
Sparse Sensor Array Design and Processing
稀疏传感器阵列设计与处理
  • 批准号:
    2236023
  • 财政年份:
    2023
  • 资助金额:
    $ 46.57万
  • 项目类别:
    Standard Grant
CAREER: Physics-inspired Machine Learning with Sparse and Asynchronous p-bits
职业:利用稀疏和异步 p 位进行物理启发的机器学习
  • 批准号:
    2237357
  • 财政年份:
    2023
  • 资助金额:
    $ 46.57万
  • 项目类别:
    Continuing Grant
Realization of sparse control with model predictive control and guarantee of its performance
模型预测控制稀疏控制的实现及其性能保证
  • 批准号:
    23K03916
  • 财政年份:
    2023
  • 资助金额:
    $ 46.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ATD: Sparse and Localized Graph Convolutional Networks for Anomaly Detection and Active Learning
ATD:用于异常检测和主动学习的稀疏和局部图卷积网络
  • 批准号:
    2220574
  • 财政年份:
    2023
  • 资助金额:
    $ 46.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了