CHS: Medium: Behavior360: Learning a Human Behaviorome in Uncontrolled Settings

CHS:媒介:Behavior360:在不受控制的环境中学习人类行为组

基本信息

  • 批准号:
    1954372
  • 负责人:
  • 金额:
    $ 115.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

With the maturing of mobile sensing, computing, and machine learning, scientists can now build intelligent tools to better understand human behavior by analyzing data from commercial, wearable sensors (such as smartwatches). The goal of this project is to design, build, and evaluate novel algorithms that continuously sense, model, analyze, and interpret human behavior from smartwatch sensor data collected continuously in the wild. Machine learning methods will be designed to infer behavior patterns from collected data as well as generate explanations of behavior patterns that can be easily interpreted by humans with diverse backgrounds. The computational methods will be evaluated using historical data as well as new data collected in free-living environments. The relationship between health and behavior will be explored by using machine learning to derive clinical health scores from collected and modeled sensor data. The research will involve students from diverse disciplinary and demographic backgrounds through involvement in summer research programs and capstone projects.The technical goals of this project are divided into three aims. First, because continuous behavior sensing requires resources that exceed the power capacity of current smartwatches, the investigators will design algorithms that optimize the trade-off between predictive performance and power consumption. Second, the investigators will create robust behavior models that combine sparse label information with sensor data to automatically construct a vocabulary of human behavior, and employ domain adaptation to generalize models across people, times, and behavior types. Third, the investigators will create machine learning methods to produce accurate and interpretable clinical health scores from behavior data with automatically-generated text explanations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着移动传感、计算和机器学习的成熟,科学家们现在可以构建智能工具,通过分析来自商业、可穿戴传感器(如智能手表)的数据来更好地理解人类行为。该项目的目标是设计、构建和评估新的算法,这些算法可以从智能手表传感器在野外连续收集的数据中持续感知、建模、分析和解释人类行为。机器学习方法将被设计用于从收集的数据中推断行为模式,并生成行为模式的解释,这些解释可以被具有不同背景的人轻松解释。计算方法将使用历史数据以及在自由生活环境中收集的新数据进行评估。健康和行为之间的关系将通过使用机器学习从收集和建模的传感器数据中获得临床健康评分来探索。这项研究将涉及来自不同学科和人口背景的学生,通过参与暑期研究项目和顶点项目。本项目的技术目标分为三个目标。首先,由于持续的行为感知需要的资源超过了当前智能手表的功率容量,研究人员将设计算法,优化预测性能和功耗之间的权衡。其次,研究人员将创建鲁棒的行为模型,将稀疏标签信息与传感器数据结合起来,自动构建人类行为词汇表,并采用领域自适应来泛化跨越人物、时间和行为类型的模型。第三,研究人员将创建机器学习方法,通过自动生成的文本解释,从行为数据中生成准确且可解释的临床健康评分。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multimodal Time-Series Activity Forecasting for Adaptive Lifestyle Intervention Design
用于适应性生活方式干预设计的多模式时间序列活动预测
On-Device Machine Learning for Diagnosis of Parkinson’s Disease from Hand Drawn Artifacts
设备上机器学习通过手绘工件诊断帕金森病
BraIN: A Bidirectional Generative Adversarial Networks for image captions
Probabilistic Cascading Classifier for Energy-Efficient Activity Monitoring in Wearables
  • DOI:
    10.1109/jsen.2022.3175881
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Mahdi Pedram;Ramesh Kumar Sah;Seyed Ali Rokni;Marjan Nourollahi;H. Ghasemzadeh
  • 通讯作者:
    Mahdi Pedram;Ramesh Kumar Sah;Seyed Ali Rokni;Marjan Nourollahi;H. Ghasemzadeh
Fusing Ambient and Mobile Sensor Features Into a Behaviorome for Predicting Clinical Health Scores.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Diane Cook其他文献

The remote monitoring of gastrointestinal cancer patients’ performance status and burden of symptoms via a consumer-based activity tracker: qualitative focus group study (Preprint)
通过基于消费者的活动跟踪器远程监测胃肠癌患者的表现状态和症状负担:定性焦点小组研究(预印本)
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Ghods;A. Shahrokni;Hassan Ghasemzadeh;Diane Cook
  • 通讯作者:
    Diane Cook
Understanding the Relationship Between Ecological Momentary Assessment Methods, Sensed Behavior, and Responsiveness: Cross-Study Analysis
理解生态瞬时评估方法、感知行为和反应性之间的关系:跨研究分析
  • DOI:
    10.2196/57018
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    6.200
  • 作者:
    Diane Cook;Aiden Walker;Bryan Minor;Catherine Luna;Sarah Tomaszewski Farias;Lisa Wiese;Raven Weaver;Maureen Schmitter-Edgecombe
  • 通讯作者:
    Maureen Schmitter-Edgecombe
The Influence of Social Factors on Common Mental Disorders
社会因素对常见精神疾病的影响
  • DOI:
    10.1192/bjp.156.5.704
  • 发表时间:
    1990
  • 期刊:
  • 影响因子:
    10.5
  • 作者:
    D. Goldberg;K. Bridges;Diane Cook;Barbara Evans;D. Grayson
  • 通讯作者:
    D. Grayson
Continuous Assessment of Daytime Heart Rate Response During Inpatient Rehabilitation
  • DOI:
    10.1016/j.apmr.2017.09.092
  • 发表时间:
    2017-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Douglas Weeks;Gina Sprint;Alyssa La Fleur;Jordana Dahmen;Virgeen Stilwill;Amy Lou Meisen-Vehrs;Diane Cook
  • 通讯作者:
    Diane Cook

Diane Cook的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Diane Cook', 18)}}的其他基金

EAGER: Multi-objective generation of synthetic time series data to boost model robustness and data privacy
EAGER:合成时间序列数据的多目标生成,以提高模型的稳健性和数据隐私
  • 批准号:
    2240615
  • 财政年份:
    2023
  • 资助金额:
    $ 115.5万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Spatiotemporal transfer learning for enabling cross-country and cross-hemisphere in-season crop mapping
EAGER:协作研究:时空迁移学习,用于实现跨国和跨半球的当季作物绘图
  • 批准号:
    2227961
  • 财政年份:
    2022
  • 资助金额:
    $ 115.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Smart Health & Biomedical Res in the Era of AI and Adv Data Sci PIs Meeting 2022: Smart Health through the Life Course
合作研究:SCH:智能健康
  • 批准号:
    2232237
  • 财政年份:
    2022
  • 资助金额:
    $ 115.5万
  • 项目类别:
    Standard Grant
NRI: INT: Learning-Enabled Robot Support of Daily Activities for Successful Activity Completion
NRI:INT:支持学习的机器人支持日常活动以成功完成活动
  • 批准号:
    1734558
  • 财政年份:
    2017
  • 资助金额:
    $ 115.5万
  • 项目类别:
    Standard Grant
CPS: TTP Option: Synergy: Collaborative Research: The Science of Activity-Predictive Cyber-Physical Systems (APCPS)
CPS:TTP 选项:协同:协作研究:活动预测网络物理系统 (APCPS) 的科学
  • 批准号:
    1543656
  • 财政年份:
    2015
  • 资助金额:
    $ 115.5万
  • 项目类别:
    Standard Grant
CI-ADDO-EN: Smart Home in a Box: Creating a Large Scale, Long Term Repository for Smart Environment Technologies
CI-ADDO-EN:盒子里的智能家居:为智能环境技术创建大规模、长期存储库
  • 批准号:
    1262814
  • 财政年份:
    2013
  • 资助金额:
    $ 115.5万
  • 项目类别:
    Standard Grant
Supporting US-Based Students to Attend the 2013 IEEE International Conference on Data Mining (ICDM 2013)
支持美国学生参加 2013 年 IEEE 国际数据挖掘会议 (ICDM 2013)
  • 批准号:
    1313551
  • 财政年份:
    2013
  • 资助金额:
    $ 115.5万
  • 项目类别:
    Standard Grant
IEEE PerCom 2011 Student Travel Support
IEEE PerCom 2011 学生旅行支持
  • 批准号:
    1057724
  • 财政年份:
    2011
  • 资助金额:
    $ 115.5万
  • 项目类别:
    Standard Grant
SHB: Medium: Collaborative Research: Crafting a Human-Centric Environment to Support Human Health Needs
SHB:媒介:合作研究:打造以人为本的环境来支持人类健康需求
  • 批准号:
    1064628
  • 财政年份:
    2011
  • 资助金额:
    $ 115.5万
  • 项目类别:
    Standard Grant
NeTS: NSF Workshop Proposal on Pervasive Computing and Smart Environments with Applications
NeTS:NSF 关于普适计算和智能环境及其应用的研讨会提案
  • 批准号:
    1059280
  • 财政年份:
    2010
  • 资助金额:
    $ 115.5万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321102
  • 财政年份:
    2024
  • 资助金额:
    $ 115.5万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Bluer and Hotter: From Ultraviolet to X-ray Diagnostics of the Circumgalactic Medium
RII Track-4:@NASA:更蓝更热:从紫外到 X 射线对环绕银河系介质的诊断
  • 批准号:
    2327438
  • 财政年份:
    2024
  • 资助金额:
    $ 115.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 115.5万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 115.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 115.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 115.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 115.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 115.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 115.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 115.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了