Studying Nonequilibrium Steady States with Quantum Chemistry Methods

用量子化学方法研究非平衡稳态

基本信息

  • 批准号:
    1954580
  • 负责人:
  • 金额:
    $ 33.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

David Limmer of the University of California, Berkeley is supported by an award from the Chemical Theory, Models and Computational Methods program in the Division of Chemistry to develop computational tools to study molecular systems driven far away from equilibrium. Such nonequilibrium conditions occur throughout the natural and synthetic world. Materials are seldom assembled quasi-statically. Chemical reactions are often initiated with excitation. Life would cease if not constantly supplied with sources of energy. Despite this ubiquity, there are few numerical tools designed to glean macroscopic consequences from these driven molecular components. Without such tools, progress in chemistry is stifled. There are few physical principles to act a guide, to bound possibilities, to explain observations and to predict novel behavior. By using recent developments in an area of mathematics known as large deviation theory, Dr. Limmer and his research group develop methods to fill this void. This allows them to address contemporary questions in active, driven, fluctuating, and flowing systems. These developments are done in conjunction with an effort to enhance scientific literacy through youth based scientific computing initiatives including games-based learning programs designed to convey basic nonequilibrium concepts. In order to develop novel numerical tools for studying driven molecular systems, Prof. Limmer and his research group use results from large deviation theory. Large deviation theory clarifies an isomorphism between algorithms to study nonequilibrium systems and those employed in traditional quantum chemistry, by defining an eigenvalue equation whose solution codifies the stability and response properties of general nonequilibrium steady states. While solving this equation exactly for interacting systems is exponentially hard, Dr. Limmer develops techniques for approximating it formally and estimating it stochastically. These techniques take inspiration from methods developed for solving the Schrödinger equation, including using diffusion and variation Monte Carlo, tensor products and many body theories. The class of algorithms Dr. Limmer develops represents a fundamentally different way to approach the simulation of driven molecular systems on a computer, which are predominately simulated by direct integration of an evolution equation. These techniques allow Dr. Limmer and his group to bridge the timescales available to simulation of nonequilibrium systems to those relevant to experiment, by targeting rare fluctuations. These techniques will be used to test the validity of basic constituent relationships of macroscopic transport for describing flows on nanoscales and for determining phase diagrams of active matter where traditional free energy based methods do not apply.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
加州大学伯克利分校的David Limmer得到了化学部化学理论、模型和计算方法计划的支持,该计划开发计算工具来研究远离平衡的分子系统。这种非平衡状态在整个自然界和人造世界中都存在。材料很少是准静态组装的。化学反应通常是在激发下开始的。如果没有源源不断的能量供应,生命就会停止。尽管无处不在,但很少有数值工具设计来收集这些受驱动的分子成分的宏观后果。如果没有这样的工具,化学方面的进步就会被扼杀。很少有物理原理来充当向导、限制可能性、解释观察和预测新的行为。通过利用被称为大偏差理论的数学领域的最新进展,利默博士和他的研究小组开发出了填补这一空白的方法。这使他们能够在活跃的、受驱动的、波动的和流动的系统中解决当代问题。这些发展是与通过以青年为基础的科学计算倡议,包括旨在传达基本非平衡概念的基于游戏的学习方案,来提高科学素养的努力相结合的。为了开发研究驱动分子系统的新的数值工具,Limmer教授和他的研究小组使用了大偏差理论的结果。大偏差理论通过定义一个本征值方程,阐明了研究非平衡系统的算法与传统量子化学中使用的算法之间的同构,该方程的解编码了一般非平衡稳态的稳定性和响应特性。虽然精确地求解相互作用系统的这个方程是非常困难的,但利默博士开发了形式上近似它并随机估计它的技术。这些技术的灵感来自于为求解薛定谔方程而开发的方法,包括使用扩散和变分蒙特卡罗、张量积和许多物体理论。利默博士开发的这类算法代表了一种完全不同的方式,可以在计算机上模拟受驱动的分子系统,这些系统主要是通过直接积分演化方程来模拟的。这些技术使利默博士和他的团队能够通过瞄准罕见的波动,将可用于模拟非平衡系统的时间尺度与那些与实验相关的时间尺度联系起来。这些技术将被用来测试宏观输运的基本组成关系的有效性,用于描述纳米尺度上的流动,并用于确定基于传统自由能方法不适用的活性物质的相图。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reinforcement learning of rare diffusive dynamics
  • DOI:
    10.1063/5.0057323
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Avishek Das;Dominic C. Rose;J. P. Garrahan;David T. Limmer
  • 通讯作者:
    Avishek Das;Dominic C. Rose;J. P. Garrahan;David T. Limmer
Inferring equilibrium transition rates from nonequilibrium protocols
从非平衡协议推断平衡转变率
  • DOI:
    10.1016/j.bpj.2023.03.031
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Kuznets-Speck, Benjamin;Limmer, David T.
  • 通讯作者:
    Limmer, David T.
Direct Evaluation of Rare Events in Active Matter from Variational Path Sampling
通过变分路径采样直接评估活性物质中的稀有事件
  • DOI:
    10.1103/physrevlett.128.028005
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Das, Avishek;Kuznets-Speck, Benjamin;Limmer, David T.
  • 通讯作者:
    Limmer, David T.
A large deviation theory perspective on nanoscale transport phenomena
  • DOI:
    10.1140/epjb/s10051-021-00164-1
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David T. Limmer;C. Y. Gao;A. Poggioli
  • 通讯作者:
    David T. Limmer;C. Y. Gao;A. Poggioli
Dissipation bounds the amplification of transition rates far from equilibrium
耗散限制了远离平衡的转变率的放大
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Limmer其他文献

Kinetic frustration controls membrane-bound protein condensates
  • DOI:
    10.1016/j.bpj.2023.11.178
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    Simou Sun;Trevor GrandPre;David Limmer;Jay Groves
  • 通讯作者:
    Jay Groves

David Limmer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Limmer', 18)}}的其他基金

Collaborative Research: Soft Interfaces and Charge Separation Stabilization
合作研究:软界面和电荷分离稳定性
  • 批准号:
    2102314
  • 财政年份:
    2021
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Standard Grant

相似海外基金

Exploration of nonequilibrium electronic states under steady flow
稳态流动下非平衡电子态的探索
  • 批准号:
    21K14398
  • 财政年份:
    2021
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Microscopic theory for nonequilibrium steady states of Mott insulators
莫特绝缘体非平衡稳态的微观理论
  • 批准号:
    20K14407
  • 财政年份:
    2020
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Moving state and its dynamics for the magnetic skyrmion at nonequilibrium steady and nonsteady states
非平衡稳态和非稳态磁斯格明子的运动状态及其动力学
  • 批准号:
    19K03709
  • 财政年份:
    2019
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study to elucidate a driving mechanism of moving magnetic skyrmions in a nonequilibrium steady state and under an external field
研究阐明非平衡稳态和外场下运动磁斯格明子的驱动机制
  • 批准号:
    17K14327
  • 财政年份:
    2017
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Nonequilibrium steady states in periodically driven systems
周期性驱动系统中的非平衡稳态
  • 批准号:
    15K17718
  • 财政年份:
    2015
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Properties of nonequilibrium steady states
非平衡稳态的性质
  • 批准号:
    DP140100177
  • 财政年份:
    2014
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Discovery Projects
Nonequilibrium Statistical Mechanics of Nonequilibrium Steady States with Information Processing
非平衡稳态的非平衡统计力学与信息处理
  • 批准号:
    23840024
  • 财政年份:
    2011
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
New Approach to Nonequilibrium Steady States based on the AdS/CFT Correspondence
基于 AdS/CFT 对应关系的非平衡稳态新方法
  • 批准号:
    23654132
  • 财政年份:
    2011
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
ITR: Advances of Simulation Algorithm of Quantum Manybody Transport in Steady State Nonequilibrium
ITR:稳态非平衡量子多体输运模拟算法研究进展
  • 批准号:
    0426826
  • 财政年份:
    2004
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Continuing Grant
INTRAVENOUS DOSE-RESPONSE STUDY OF NONEQUILIBRIUM & STEADY STATE GROWTH HORMONE
非平衡剂的静脉剂量反应研究
  • 批准号:
    6249349
  • 财政年份:
    1997
  • 资助金额:
    $ 33.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了