III: Medium: Collaborative Research: Towards Scalable and Interpretable Graph Neural Networks
III:媒介:协作研究:迈向可扩展和可解释的图神经网络
基本信息
- 批准号:1955285
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graphs are ubiquitous data structures in numerous domains, such as social science (social networks), natural science (physical systems, and protein-protein interaction networks) and knowledge graphs. As new generalizations of traditional deep neural networks to graph structured data, Graph Neural Networks (or GNNs) have demonstrated the power in graph representation learning and have permeated numerous areas of science and technology. However, GNNs also inherited the drawback of traditional deep neural networks, i.e., lacking interpretability. Moreover, the complexity of graph data introduces the scalability as a new limitation for GNNs because graph structured data are not independent. These drawbacks have raised tremendous concerns to adopt GNNs in many critical applications pertaining to fairness, privacy, and safety. Thus, this project aims to tackle the major drawbacks of GNNs and greatly enlarge their usability in critical applications. To achieve the research goal, this project systematically investigates advanced principles for scalable GNNs and new mechanisms to interpret GNNs. The proposed research extends the state-of-the-art GNNs to a new frontier, investigates original problems that entreat innovative solutions and paves the way for a new research endeavor effectively tame graph mining. As many real-world domains problems requires scalable and interpretable graph mining techniques, the project has potential to benefit many real-world applications from various disciplines such as Computer Science, Social Science, Healthcare and Bioinformatics. This project proposes novel principles and mechanisms for scalable and interpretable graph neural networks to facilitate the adoption of GNNs on critical domains, investigates associated fundamental research issues and develops effective algorithms. The project offers the first comprehensive investigation on these directions, and the designed novel methodologies and tasks will deepen our understanding on the inner working mechanisms of GNNs and contribute to real-world applications. The success of this project will be (1) New scalable and interpretable GNNs with state-of-the-art graph representation learning and predictive performance; (2) Theoretical analysis such as convergence and complexity; and (3) Open-source implementations of all key algorithms and frameworks. Disparate means are planned to disseminate the project and its findings, such as web enabled data and software repositories, books, journal and conference publications, special purpose workshops or tutorials, and industrial collaborations. The project can be effectively integrated to undergraduate and graduate courses as well as in student research projects.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图是许多领域中普遍存在的数据结构,如社会科学(社会网络)、自然科学(物理系统和蛋白质-蛋白质相互作用网络)和知识图。作为传统深度神经网络对图结构数据的新推广,图神经网络(简称GNN)在图表示学习方面显示出强大的能力,并已经渗透到许多科学和技术领域。然而,GNN也继承了传统深度神经网络的缺点,即缺乏可解释性。此外,图数据的复杂性给GNN带来了新的限制,因为图结构的数据不是独立的。这些缺点引起了人们对在许多涉及公平、隐私和安全的关键应用中采用GNN的极大担忧。因此,该项目旨在解决GNN的主要缺点,并极大地扩大其在关键应用中的可用性。为了实现这一研究目标,本项目系统地研究了可扩展GNN的先进原理和解释GNN的新机制。提出的研究将最新的GNN扩展到一个新的前沿,研究需要创新解决方案的原始问题,并为有效驯服图挖掘的新的研究努力铺平道路。由于许多现实领域的问题需要可伸缩和可解释的图挖掘技术,该项目有可能使计算机科学、社会科学、医疗保健和生物信息学等不同学科的许多现实世界应用受益。该项目提出了可扩展和可解释的图神经网络的新原理和机制,以促进关键领域上的GNN的采用,研究相关的基础研究问题,并开发有效的算法。该项目首次对这些方向进行了全面调查,所设计的新颖方法和任务将加深我们对全球导航网络内部工作机制的理解,并有助于实际应用。该项目的成功将是(1)新的可扩展和可解释的GNN,具有最先进的图形表示学习和预测性能;(2)理论分析,如收敛和复杂性;以及(3)所有关键算法和框架的开源实施。计划采用不同的方式传播该项目及其调查结果,如网上数据和软件储存库、书籍、期刊和会议出版物、特殊目的讲习班或教程以及行业合作。该项目可以有效地整合到本科生和研究生课程以及学生研究项目中。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiliang Tang其他文献
DeepRobust: a Platform for Adversarial Attacks and Defenses
DeepRobust:对抗性攻击和防御的平台
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yaxin Li;Wei Jin;Han Xu;Jiliang Tang - 通讯作者:
Jiliang Tang
Graph Trend Networks for Recommendations
用于推荐的图趋势网络
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Wenqi Fan;Xiaorui Liu;Wei Jin;Xiangyu Zhao;Jiliang Tang;Qing Li - 通讯作者:
Qing Li
Social Media Data Integration for Community Detection
用于社区检测的社交媒体数据集成
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Jiliang Tang;Xufei Wang;Huan Liu - 通讯作者:
Huan Liu
A Robust Semantics-based Watermark for Large Language Model against Paraphrasing
一种基于语义的鲁棒抗释义大型语言模型水印
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jie Ren;Han Xu;Yiding Liu;Yingqian Cui;Shuaiqiang Wang;Dawei Yin;Jiliang Tang - 通讯作者:
Jiliang Tang
Aligning large language models and geometric deep models for protein representation
将大型语言模型和几何深度学习模型用于蛋白质表征的整合(或对齐,需根据具体语境确定更准确的意思)
- DOI:
10.1016/j.patter.2025.101227 - 发表时间:
2025-05-09 - 期刊:
- 影响因子:7.400
- 作者:
Dong Shu;Bingbing Duan;Kai Guo;Kaixiong Zhou;Jiliang Tang;Mengnan Du - 通讯作者:
Mengnan Du
Jiliang Tang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiliang Tang', 18)}}的其他基金
III:Medium:Computation and Communication Efficient Distributed Learning
III:中:计算与通信高效分布式学习
- 批准号:
2212032 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
- 批准号:
2212144 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Travel: SDM2022 Student Travel Grant
旅行:SDM2022 学生旅行补助金
- 批准号:
2213055 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CAREER: Real-World Networks: Modeling and Analysis of Signed Networks with Positive and Negative Links
职业:现实世界网络:具有正向和负向链接的签名网络的建模和分析
- 批准号:
1845081 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: Effective Labeled Data Generation via Generative Adversarial Learning
III:小:协作研究:通过生成对抗性学习有效生成标记数据
- 批准号:
1907704 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: A General Feature Learning Framework for Dynamic Attributed Networks
III:小:协作研究:动态属性网络的通用特征学习框架
- 批准号:
1715940 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Student Activities Support at 2017 SIAM International Conference on Data Mining (SDM)
2017 SIAM 国际数据挖掘会议 (SDM) 学生活动支持
- 批准号:
1719275 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
III: Small: Unsupervised Feature Selection in the Era of Big Data
III:小:大数据时代的无监督特征选择
- 批准号:
1714741 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312862 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
- 批准号:
2310113 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant