III:Medium:Computation and Communication Efficient Distributed Learning

III:中:计算与通信高效分布式学习

基本信息

  • 批准号:
    2212032
  • 负责人:
  • 金额:
    $ 120万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

With the explosion of large-scale machine learning tasks and the increasing availability of computational resources, distributed learning has become the cornerstone for extracting information and knowledge from big data. Nodes in distributed learning need to communicate information. Thus, distributed learning faces challenges around computational efficiency similar to conventional machine learning. But it also faces the additional challenge of communication efficiency. These efficiency problems have greatly hindered the applications of distributed learning in large-scale machine learning tasks and complex computing environments, such as resource-limited edge computing. In this project, we embrace new challenges and opportunities to comprehensively study the computation and communication efficiency in distributed learning. The project’s novelties are providing new perspectives for developing and deploying efficient and scalable distributed learning algorithms in large-scale computing clusters with limited communication protocols and network bandwidth. Nowadays, as big data is ubiquitous, the project's impacts are to benefit many real-world applications from various disciplines such as computer science, social sciences and others areas.This project aims to tackle the major drawbacks in existing distributed learning algorithms from the efficiency perspective and greatly promote the efficiency and scalability of large-scale distributed learning. To achieve this goal, we systematically investigate two distributed learning paradigms, centralized and decentralized learning, as well as two major efficiency obstacles, computation and communication efficiency. To address these paradigms and obstacles, the project has three dedicated designed research directions. Each direction will dramatically extend the science through not only providing rigorous theoretical guarantees, but also comprehensive empirical studies in practical systems. The core intellectual is a comprehensive investigation on science and the design of novel methodologies to deepen our understanding on the efficiency, scalability, and practical usages of distributed learning systems and algorithms. The outcomes of this project will be: (1) New efficient and scalable distributed learning algorithms with state-of-the-art computation and communication efficiency, as well as predictive accuracy; (2) Theoretical analysis such as convergence rate and communication complexity; and (3) Open-source implementations of all key algorithms, systems, and frameworks. The proposed research will involve graduate and undergraduate students in pursuing their thesis or honor's projects. Discoveries and research findings of this project will be tightly integrated into several current and new courses. Instructional content will be created to enable fast distribution of our results to a wide audience, and tools will be built to help machine learning knowledge awareness and adoption. The findings of this project will be timely disseminated via multiple means such as a distributed learning repository, journal and conference publications, special purpose tutorials and workshops co-held at prominent conferences, and industrial participation such as internships.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着大规模机器学习任务的爆炸性增长和计算资源的日益可获得性,分布式学习已经成为从大数据中提取信息和知识的基石。分布式学习中的节点需要进行信息交流。因此,分布式学习面临着类似于传统机器学习的计算效率方面的挑战。但它也面临着沟通效率的额外挑战。这些效率问题极大地阻碍了分布式学习在大规模机器学习任务和资源受限的边缘计算等复杂计算环境中的应用。在这个项目中,我们迎接新的挑战和机遇,全面研究分布式学习中的计算和通信效率。该项目的新颖性为在通信协议和网络带宽有限的大规模计算集群中开发和部署高效和可扩展的分布式学习算法提供了新的视角。在大数据无处不在的今天,该项目的影响是造福于来自计算机科学、社会科学等领域的许多现实世界的应用。该项目旨在从效率的角度解决现有分布式学习算法的主要缺陷,并极大地提高大规模分布式学习的效率和可扩展性。为了实现这一目标,我们系统地研究了集中式和分散式两种分布式学习范式,以及计算效率和通信效率这两大效率障碍。为了解决这些范式和障碍,该项目有三个专门设计的研究方向。每个方向都将极大地扩展科学,不仅提供严格的理论保证,而且还在实践系统中进行全面的实证研究。核心知识是对科学的全面调查和新方法的设计,以加深我们对分布式学习系统和算法的效率、可扩展性和实用用途的理解。该项目的成果将是:(1)新的高效和可扩展的分布式学习算法,具有最先进的计算和通信效率以及预测精度;(2)理论分析,如收敛速度和通信复杂性;以及(3)所有关键算法、系统和框架的开源实现。这项拟议的研究将让研究生和本科生参与他们的论文或荣誉项目。这个项目的发现和研究成果将紧密地整合到几门现有的和新的课程中。将创建教学内容,以使我们的结果能够快速传播给广泛的受众,并将建立工具,以帮助机器学习知识的认识和采用。该项目的成果将通过多种方式及时传播,如分布式学习资源库、期刊和会议出版物、在知名会议上联合举办的特殊用途教程和研讨会,以及实习生等行业参与。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiliang Tang其他文献

DeepRobust: a Platform for Adversarial Attacks and Defenses
DeepRobust:对抗性攻击和防御的平台
Graph Trend Networks for Recommendations
用于推荐的图趋势网络
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenqi Fan;Xiaorui Liu;Wei Jin;Xiangyu Zhao;Jiliang Tang;Qing Li
  • 通讯作者:
    Qing Li
Social Media Data Integration for Community Detection
用于社区检测的社交媒体数据集成
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiliang Tang;Xufei Wang;Huan Liu
  • 通讯作者:
    Huan Liu
A Robust Semantics-based Watermark for Large Language Model against Paraphrasing
一种基于语义的鲁棒抗释义大型语言模型水印
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jie Ren;Han Xu;Yiding Liu;Yingqian Cui;Shuaiqiang Wang;Dawei Yin;Jiliang Tang
  • 通讯作者:
    Jiliang Tang
Aligning large language models and geometric deep models for protein representation
将大型语言模型和几何深度学习模型用于蛋白质表征的整合(或对齐,需根据具体语境确定更准确的意思)
  • DOI:
    10.1016/j.patter.2025.101227
  • 发表时间:
    2025-05-09
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Dong Shu;Bingbing Duan;Kai Guo;Kaixiong Zhou;Jiliang Tang;Mengnan Du
  • 通讯作者:
    Mengnan Du

Jiliang Tang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiliang Tang', 18)}}的其他基金

Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
  • 批准号:
    2212144
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Travel: SDM2022 Student Travel Grant
旅行:SDM2022 学生旅行补助金
  • 批准号:
    2213055
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Towards Scalable and Interpretable Graph Neural Networks
III:媒介:协作研究:迈向可扩展和可解释的图神经网络
  • 批准号:
    1955285
  • 财政年份:
    2020
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
CAREER: Real-World Networks: Modeling and Analysis of Signed Networks with Positive and Negative Links
职业:现实世界网络:具有正向和负向链接的签名网络的建模和分析
  • 批准号:
    1845081
  • 财政年份:
    2019
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
III: Small: Collaborative Research: Effective Labeled Data Generation via Generative Adversarial Learning
III:小:协作研究:通过生成对抗性学习有效生成标记数据
  • 批准号:
    1907704
  • 财政年份:
    2019
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
III: Small: Collaborative Research: A General Feature Learning Framework for Dynamic Attributed Networks
III:小:协作研究:动态属性网络的通用特征学习框架
  • 批准号:
    1715940
  • 财政年份:
    2017
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Student Activities Support at 2017 SIAM International Conference on Data Mining (SDM)
2017 SIAM 国际数据挖掘会议 (SDM) 学生活动支持
  • 批准号:
    1719275
  • 财政年份:
    2017
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
III: Small: Unsupervised Feature Selection in the Era of Big Data
III:小:大数据时代的无监督特征选择
  • 批准号:
    1714741
  • 财政年份:
    2017
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402837
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402835
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: New Constructions for Garbled Computation
协作研究:SaTC:核心:中:乱码计算的新结构
  • 批准号:
    2246355
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: New Constructions for Garbled Computation
协作研究:SaTC:核心:中:乱码计算的新结构
  • 批准号:
    2246354
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
FET: Medium: Programming multi-cellular systems with spatially-defined computation
FET:中:使用空间定义的计算对多细胞系统进行编程
  • 批准号:
    2312398
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: New Constructions for Garbled Computation
协作研究:SaTC:核心:中:乱码计算的新结构
  • 批准号:
    2246353
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium: Engineering DNA and RNA computation through simulation, sequence design, and experimental verification
合作研究:FET:中:通过模拟、序列设计和实验验证进行 DNA 和 RNA 计算
  • 批准号:
    2211792
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
FET: Medium: Neural network computation and learning in well-mixed and spatially-organized molecular systems
FET:中:混合良好且空间组织的分子系统中的神经网络计算和学习
  • 批准号:
    2212546
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了