Collaborative Research: CNS Core: Medium: Learning to Cache and Caching to Learn in High Performance Caching Systems
合作研究:CNS 核心:中:学习缓存以及在高性能缓存系统中学习缓存
基本信息
- 批准号:1955696
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Caching is fundamental to cloud computing and content distribution, and is important to the vast number of applications and services they support. Crucial performance metrics of a caching algorithm are its ability to quickly and accurately learn a changing popularity distribution. However, there is a serious disconnect between empirical studies using real-world traces that account for popularity changes, and analytical performance analysis results that assume a fixed popularity. A basic goal of this project is to develop a methodology based on online learning and reinforcement learning for caching algorithm design with provable performance guarantees. This enables the systematic design of caching algorithms that can be tailored to a variety of application contexts. The use-case of these algorithms is in high performance caching networks that support large-scale cloud applications and services. Emulation of high-performance caching systems to leverage and to empirically evaluate the online learning algorithms developed supports this goal, and provides a real-world context for the methodology developed. The results will also enhance the performance of content distribution platforms. At the same time the project develops fundamental theories that pertain to the area of machine learning, specifically to online learning. This project aims at optimally utilizing locally available memory and computing resources of caches, while ensuring provably good performance via fast and accurate learning of content popularity. This requires the conjunction of several mathematical tools to analyze online learning algorithms, as well as strong systems development skills to make the algorithms a reality. The project addresses these key challenges in two main themes. The first theme focuses on systematic design of distributed online learning in networks of caches using collaborative filtering for distributed identification of popular content, and multi-agent reinforcement learning for joint learning and content placement. The second theme focuses on building high performing caching systems using the algorithms developed in the first theme, and quantifying the impacts of the algorithms on real-world applications such as Hipster Shop, an open-source e-commerce website, and Spark data-analytics job pipelines. The immediate impact of this project is in creating high performance caching schemes that apply to cloud computing and content distribution networks. This project also advances the fundamental theory of online learning. The project includes an education plan focusing on machine learning and caching, and outreach in the form of summer camps and seminars for high school students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
缓存是云计算和内容分发的基础,对它们支持的大量应用程序和服务非常重要。缓存算法的关键性能指标是其快速而准确地了解不断变化的受欢迎程度分布的能力。然而,使用解释受欢迎程度变化的真实世界痕迹的实证研究与假设固定受欢迎程度的分析性绩效分析结果之间存在严重脱节。这个项目的一个基本目标是开发一种基于在线学习和强化学习的方法,用于缓存算法设计,并提供可证明的性能保证。这使得能够针对各种应用环境定制缓存算法的系统设计。这些算法的使用案例是支持大规模云应用和服务的高性能缓存网络。对高性能缓存系统的仿真以利用和经验性地评估开发的在线学习算法支持这一目标,并为开发的方法提供了现实环境。这一结果还将提升内容分发平台的表现。与此同时,该项目开发了与机器学习领域相关的基本理论,特别是与在线学习有关的理论。该项目旨在优化利用本地可用内存和缓存的计算资源,同时通过快速和准确地学习内容受欢迎程度来确保可证明的良好性能。这需要几个数学工具的结合来分析在线学习算法,以及强大的系统开发技能来使算法成为现实。该项目在两个主要主题中解决了这些关键挑战。第一个主题着重于系统地设计缓存网络中的分布式在线学习,使用协作过滤来分布式识别流行内容,并使用多代理强化学习来联合学习和内容放置。第二个主题侧重于使用第一个主题中开发的算法构建高性能缓存系统,并量化算法对现实世界应用程序的影响,例如开源电子商务网站Hipster Shop和Spark数据分析作业管道。该项目的直接影响是创建适用于云计算和内容分发网络的高性能缓存方案。本项目还提出了在线学习的基本理论。该项目包括一个专注于机器学习和缓存的教育计划,以及以夏令营和高中生研讨会的形式进行的推广。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning to Cache and Caching to Learn: Regret Analysis of Caching Algorithms
学习缓存和缓存学习:缓存算法的遗憾分析
- DOI:10.1109/tnet.2021.3105880
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Bura, Archana;Rengarajan, Desik;Kalathil, Dileep;Shakkottai, Srinivas;Chamberland, Jean-Francois
- 通讯作者:Chamberland, Jean-Francois
Enhanced Meta Reinforcement Learning using Demonstrations in Sparse Reward Environments
使用稀疏奖励环境中的演示增强元强化学习
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Rengarajan, Desik;Chaudhary, Sapana;Jaewon, Kim;Kalathil, Dileep;Shakkottai, Srinivas
- 通讯作者:Shakkottai, Srinivas
DOPE: Doubly Optimistic and Pessimistic Exploration for Safe Reinforcement Learning
- DOI:
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Archana Bura;Aria HasanzadeZonuzy;D. Kalathil;S. Shakkottai;J. Chamberland
- 通讯作者:Archana Bura;Aria HasanzadeZonuzy;D. Kalathil;S. Shakkottai;J. Chamberland
Mode-Suppression: A Simple, Stable and Scalable Chunk-Sharing Algorithm for P2P Networks
- DOI:10.1109/tnet.2021.3092008
- 发表时间:2021-12-01
- 期刊:
- 影响因子:3.7
- 作者:Reddyvari, Vamseedhar;Bobbili, Sarat Chandra;Shakkottai, Srinivas
- 通讯作者:Shakkottai, Srinivas
Reinforcement Learning for Mean Field Games with Strategic Complementarities (AISTATS 2021)
具有战略互补性的平均场游戏的强化学习 (AISTATS 2021)
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Lee, Kiyeob;Rengarajan, Desik;Kalathil, Dileep;Shakkottai, Srinivas
- 通讯作者:Shakkottai, Srinivas
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srinivas Shakkottai其他文献
Opportunities for Network Coding: To Wait or Not to Wait
网络编码的机会:等待还是不等待
- DOI:
10.1109/tnet.2014.2347339 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yu;Navid Abedini;Natarajan Gautam;Alexander Sprintson;Srinivas Shakkottai - 通讯作者:
Srinivas Shakkottai
Srinivas Shakkottai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srinivas Shakkottai', 18)}}的其他基金
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
- 批准号:
2312978 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Empowering Prosumers in Electricity Markets Through Market Design and Learning
协作研究:CPS:中:通过市场设计和学习为电力市场的产消者赋权
- 批准号:
2038963 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
I-Corps: Residential Energy Management and Analytics
I-Corps:住宅能源管理和分析
- 批准号:
1848868 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: EARS: Creating an Ecosystem for Enhanced Spectrum Utilization Through Dynamic Market Mechanisms
合作研究:EARS:通过动态市场机制创建增强频谱利用率的生态系统
- 批准号:
1443891 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: RIPS Type 2: Strategic Analysis and Design of Robust and Resilient Interdependent Power and Communications Networks
合作研究:RIPS 类型 2:稳健且有弹性的相互依赖的电力和通信网络的战略分析和设计
- 批准号:
1440969 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CAREER: Beyond Akamai and BitTorrent: Information and Decision Dynamics in Content Distribution Networks
职业:超越 Akamai 和 BitTorrent:内容分发网络中的信息和决策动态
- 批准号:
1149458 - 财政年份:2012
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
NSF Workshop on the Frontiers of Stochastic Systems, Networks and Control. The workshop will be held on October 27, 2012 at Texas A and M University
NSF 随机系统、网络和控制前沿研讨会。
- 批准号:
1235942 - 财政年份:2012
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
NeTS: Medium: Collaborative Research: Modeling, Design and Emulation of P2P Real-Time Streaming Networks
NeTS:媒介:协作研究:P2P 实时流网络的建模、设计和仿真
- 批准号:
0963818 - 财政年份:2010
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
NeTS: Medium: Collaborative Research: Designing a Content-Aware Internet Ecosystem
NeTS:媒介:协作研究:设计内容感知的互联网生态系统
- 批准号:
0904520 - 财政年份:2009
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
IL-17A通过STAT5影响CNS2区域甲基化抑制调节性T细胞功能在银屑病发病中的作用和机制研究
- 批准号:82304006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miR-20a通过调控CD4+T细胞焦亡促进CNS炎性脱髓鞘疾病的发生及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血浆CNS来源外泌体中寡聚磷酸化α-synuclein对PD病程的提示研究
- 批准号:82101506
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于脑微血管内皮细胞模型的毒力岛4在单增李斯特菌CNS炎症中的作用及机制研究
- 批准号:32160834
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
胱硫醚-β-合成酶介导小胶质细胞极化致糖皮质激素CNS毒性作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物工程化微泡干扰MAPK通路重编程CNS微环境起始脑胶质瘤免疫检查点抑制剂的应答研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大气细颗粒物通过NF-κB/LBP-9信号通路诱导小胶质细胞激活加剧CNS脱髓鞘损伤的作用机制研究
- 批准号:82071396
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
新型化合物组合抑制STAT6维持Foxp3-CNS2去甲基化产生稳定的iTreg细胞诱导小鼠肾移植免疫耐受的机制研究
- 批准号:82070773
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
基于菌群-肠-脑轴探讨柚皮素改善CNS髓鞘脱失的机制研究
- 批准号:
- 批准年份:2020
- 资助金额:50 万元
- 项目类别:
CNS区域甲基化异常调控FOXP3基因介导调节型T细胞在青光眼视神经损伤中的作用机制研究
- 批准号:81970804
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
- 批准号:
2409008 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant