Collaborative Research: SHF: Medium: Bug Report Management 2.0
协作研究:SHF:中:错误报告管理 2.0
基本信息
- 批准号:1955837
- 负责人:
- 金额:$ 40.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Software systems often suffer from defects that lead to unexpected results. End users report these unexpected results via issue-reporting systems so that software engineers can identify and fix the related defects to improve the quality of the system. When reporting, users can describe the software problems using natural language or graphical information such as screenshots and videos. Unfortunately, everyday end users are rarely, if ever, trained in reporting software issues. In consequence, they often submit reports that are incomplete or hard to understand, resulting in excessive effort spent addressing the problems, or even the inability for the underlying defects to be identified and fixed. In addition, existing issue-reporting systems are unable to enforce quality standards for reports and fail to provide feedback to the reporters when they submit substandard information. This project will develop a novel-issue reporting system that will allow users to describe software problems interactively, through a dialogue with an automated software agent, rather than writing reports passively, with no feedback and quality assessment. The software agent will automatically convert the conversations into high-quality issue reports, which will be transmitted to the software engineers. The proposed system will allow software engineers to manage and fix defects faster, leading to higher-quality software systems. The project will also produce and disseminate educational material on best practices in reporting software problems. These materials are intended to be integrated into existing computer-literacy courses at all levels of education. In addition, the project will focus on recruiting and retaining computer science students from traditionally underrepresented categories. The project is centered on three specific goals. First, it will develop novel techniques for the automated analysis and quality assessment of defect reports. This component will adapt and build upon techniques for automated discourse analysis, dynamic program analysis, and computer vision. Second, it will improve the quality of issue reports through interactive mechanisms. This proactive reporting solution will be developed through cross-cutting research on empirical software engineering, human-computer interaction, automated text analysis, and advanced machine learning. This new dialogue-based reporting is expected to become the standard method by which many kinds of software issues will be reported. Finally, the project will develop more efficient and effective techniques for automated defect reproduction and duplicate detection, leveraging the high-quality reports created via the interactive reporting system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
软件系统经常遭受导致意外结果的缺陷。最终用户通过问题报告系统报告这些意外的结果,这样软件工程师就可以识别并修复相关的缺陷,从而提高系统的质量。在报告时,用户可以使用自然语言或图形信息(如截图和视频)描述软件问题。不幸的是,每天的终端用户很少(如果有的话)接受报告软件问题的培训。因此,他们经常提交不完整或难以理解的报告,导致花费过多的精力来处理问题,甚至无法识别和修复潜在的缺陷。此外,现有的问题报告制度无法执行报告的质量标准,当记者提交不合格的信息时,也无法向他们提供反馈。该项目将开发一个新问题报告系统,允许用户通过与自动软件代理的对话交互式地描述软件问题,而不是被动地编写报告,没有反馈和质量评估。软件代理将自动将对话转换为高质量的问题报告,并将其传送给软件工程师。所建议的系统将允许软件工程师更快地管理和修复缺陷,从而导致更高质量的软件系统。该项目还将制作和传播关于报告软件问题的最佳实践的教育材料。这些材料的目的是将其纳入各级教育现有的计算机知识课程。此外,该项目将侧重于从传统上代表性不足的类别中招募和留住计算机科学专业的学生。该项目以三个具体目标为中心。首先,它将为缺陷报告的自动分析和质量评估开发新的技术。该组件将适应并建立在自动话语分析、动态程序分析和计算机视觉技术的基础上。二是通过互动机制提高问题报告质量。这种主动报告解决方案将通过对经验软件工程、人机交互、自动文本分析和高级机器学习的交叉研究来开发。这种新的基于对话的报告有望成为报告多种软件问题的标准方法。最后,项目将为自动缺陷再现和重复检测开发更有效的技术,利用通过交互式报告系统创建的高质量报告。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An empirical study of data constraint implementations in Java
- DOI:10.1007/s10664-022-10175-w
- 发表时间:2021-07
- 期刊:
- 影响因子:4.1
- 作者:Juan Manuel Florez;Laura Moreno;Zenong Zhang;Shiyi Wei;Andrian Marcus
- 通讯作者:Juan Manuel Florez;Laura Moreno;Zenong Zhang;Shiyi Wei;Andrian Marcus
BURT: A Chatbot for Interactive Bug Reporting
BURT:用于交互式错误报告的聊天机器人
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Song, Y.;Mahmud, J.;De Silva, N.;Zhou, Y.;Chaparro, O.;Moran, K.;Marcus, A.;Poshyvanyk, D.
- 通讯作者:Poshyvanyk, D.
Retrieving data constraint implementations using fine-grained code patterns
使用细粒度代码模式检索数据约束实现
- DOI:10.1145/3510003.3510167
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Florez, Juan Manuel;Perry, Jonathan;Wei, Shiyi;Marcus, Andrian
- 通讯作者:Marcus, Andrian
Translating Video Recordings of Complex Mobile App UI Gestures into Replayable Scenarios
- DOI:10.1109/tse.2022.3192279
- 发表时间:2023-01
- 期刊:
- 影响因子:7.4
- 作者:Carlos Bernal-Cárdenas;Nathan Cooper;Madeleine Havranek;Kevin Moran;Oscar Chaparro;D. Poshyvanyk;Andrian Marcus
- 通讯作者:Carlos Bernal-Cárdenas;Nathan Cooper;Madeleine Havranek;Kevin Moran;Oscar Chaparro;D. Poshyvanyk;Andrian Marcus
Toward interactive bug reporting for (android app) end-users
为(android 应用程序)最终用户提供交互式错误报告
- DOI:10.1145/3540250.3549131
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Song, Yang;Mahmud, Junayed;Zhou, Ying;Chaparro, Oscar;Moran, Kevin;Marcus, Andrian;Poshyvanyk, Denys
- 通讯作者:Poshyvanyk, Denys
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrian Marcus其他文献
Text Retrieval Approaches for Concept Location in Source Code
源代码中概念定位的文本检索方法
- DOI:
10.1007/978-3-642-36054-1_5 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Andrian Marcus;S. Haiduc - 通讯作者:
S. Haiduc
Using information retrieval to support design of incremental change of software
使用信息检索支持软件增量变更设计
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
D. Poshyvanyk;Andrian Marcus - 通讯作者:
Andrian Marcus
Evolving a Project-Based Software Engineering Course: A Case Study
发展基于项目的软件工程课程:案例研究
- DOI:
10.1109/cseet.2017.22 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
David Delgado;Alejandro Velasco;Jairo Aponte;Andrian Marcus - 通讯作者:
Andrian Marcus
Adapting to online teaching in software engineering courses
适应软件工程课程在线教学
- DOI:
10.1145/3412453.3423194 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
S. Motogna;Andrian Marcus;A. Molnar - 通讯作者:
A. Molnar
JIRiSS - an Eclipse plug-in for Source Code Exploration
JIRiSS - 用于源代码探索的 Eclipse 插件
- DOI:
10.1109/icpc.2006.32 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
D. Poshyvanyk;Andrian Marcus;Yubo Dong - 通讯作者:
Yubo Dong
Andrian Marcus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrian Marcus', 18)}}的其他基金
EAGER: Automatic Identification of Bug Description Elements
EAGER:自动识别错误描述元素
- 批准号:
1848608 - 财政年份:2018
- 资助金额:
$ 40.87万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research:Text Retrieval in Software Engineering 2.0
SHF:小型:协作研究:软件工程中的文本检索 2.0
- 批准号:
1526118 - 财政年份:2015
- 资助金额:
$ 40.87万 - 项目类别:
Standard Grant
CAREER: Management of Unstructured Information During Software Evolution
职业:软件演进过程中非结构化信息的管理
- 批准号:
1514460 - 财政年份:2014
- 资助金额:
$ 40.87万 - 项目类别:
Continuing Grant
CI-P: Collaborative Research: Advanced Text Analysis Infrastructure for Software Engineering
CI-P:协作研究:软件工程的高级文本分析基础设施
- 批准号:
1205310 - 财政年份:2012
- 资助金额:
$ 40.87万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Better Comprehension of Software Engineering Data
SHF:小型:协作研究:更好地理解软件工程数据
- 批准号:
1017263 - 财政年份:2010
- 资助金额:
$ 40.87万 - 项目类别:
Continuing Grant
CAREER: Management of Unstructured Information During Software Evolution
职业:软件演进过程中非结构化信息的管理
- 批准号:
0845706 - 财政年份:2009
- 资助金额:
$ 40.87万 - 项目类别:
Continuing Grant
SRS-CCF: Supporting Software Evolution by the Combined Analysis of Textual and Structural Information
SRS-CCF:通过文本和结构信息的组合分析支持软件演进
- 批准号:
0820133 - 财政年份:2008
- 资助金额:
$ 40.87万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 40.87万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 40.87万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 40.87万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 40.87万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 40.87万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 40.87万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 40.87万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 40.87万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 40.87万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403409 - 财政年份:2024
- 资助金额:
$ 40.87万 - 项目类别:
Standard Grant














{{item.name}}会员




