Collaborative Research: SHF: Medium: NetSplicer: Scalable Decoupling-based Algorithms for Multilayer Network Analysis
合作研究:SHF:中:NetSplicer:用于多层网络分析的可扩展的基于解耦的算法
基本信息
- 批准号:1955971
- 负责人:
- 金额:$ 30.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A multilayer network is a powerful and expressive mathematical tool for modeling and analyzing social, economic, biological, and technological systems. Informally, a multilayer network is a collection of related graphs. Applications of multilayer networks include understanding social networks, economic systems, online marketplaces, and detecting vulnerabilities in cyber-physical systems. While this research area is rapidly growing, there is a dearth of computational tools for analyzing large-scale networks from diverse applications. This project will develop the theoretical foundations and software infrastructure for analyzing very large multilayer networks on modern computing systems, thereby enabling their widespread use in diverse applications.This project will develop NetSplicer, a collection of scalable high-performance algorithms for multilayer-network analysis. The approaches in NetSplicer will be based on a divide-and-conquer-like technique called network decoupling. Using decoupling, the multilayer network can be subdivided into multiple components, each of which could be potentially analyzed using known graph algorithms. Network decoupling seeks to address issues that are critical for multilayer analysis, such as reducing information loss and preserving structural and semantic information. The challenges in efficiently applying network decoupling include determining optimal decoupling strategies, preserving the structure and content of multilayer networks that have multiple vertex and edge types, and developing architecture-aware scalable algorithms that apply across different layers of a network. This project will provide a new capability for multiple research communities and will build a repository for multilayer networks. The planned collaborations with domain scientists from academia and industry, as well as curriculum development and outreach activities, will shape project development efforts to maximize impact.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多层网络是一种强大的数学工具,用于建模和分析社会,经济,生物和技术系统。非正式地,多层网络是相关图的集合。多层网络的应用包括理解社交网络、经济系统、在线市场和检测网络物理系统中的漏洞。虽然这一研究领域正在迅速发展,但缺乏用于分析来自不同应用的大规模网络的计算工具。本项目将开发在现代计算系统上分析超大型多层网络的理论基础和软件基础设施,从而使其在各种应用中得到广泛应用。本项目将开发用于多层网络分析的可扩展的高性能算法集合NetSplicer。NetSplicer中的方法将基于一种称为网络解耦的分而治之的技术。使用解耦,多层网络可以被细分为多个组件,每个组件都可以使用已知的图形算法进行分析。网络解耦旨在解决对多层分析至关重要的问题,例如减少信息丢失以及保留结构和语义信息。有效应用网络解耦的挑战包括确定最佳解耦策略,保留具有多个顶点和边类型的多层网络的结构和内容,以及开发适用于网络不同层的架构感知可扩展算法。该项目将为多个研究社区提供新的能力,并将为多层网络建立一个存储库。计划与学术界和工业界的领域科学家合作,以及课程开发和推广活动,将塑造项目开发工作,以最大限度地发挥影响力。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Performance-Portable Graph Coarsening for Efficient Multilevel Graph Analysis
高性能便携式图形粗化,用于高效的多级图形分析
- DOI:10.1109/ipdps49936.2021.00030
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Gilbert, Michael S.;Acer, Seher;Boman, Erik G.;Madduri, Kamesh;Rajamanickam, Sivasankaran
- 通讯作者:Rajamanickam, Sivasankaran
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kamesh Madduri其他文献
Accomplishing Approximate FCFS Fairness Without Queues
无队列实现近似FCFS公平
- DOI:
10.1007/978-3-540-77220-0_49 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
K. Subramani;Kamesh Madduri - 通讯作者:
Kamesh Madduri
Order or Shuffle: Empirically Evaluating Vertex Order Impact on Parallel Graph Computations
顺序或随机播放:根据经验评估顶点顺序对并行图计算的影响
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
George M. Slota;S. Rajamanickam;Kamesh Madduri - 通讯作者:
Kamesh Madduri
Kinetic turbulence simulations at extreme scale on leadership-class systems
在领先级系统上进行超大规模的动力学湍流模拟
- DOI:
10.1145/2503210.2503258 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Bei Wang;S. Ethier;W. Tang;T. Williams;K. Ibrahim;Kamesh Madduri;Samuel Williams;L. Oliker - 通讯作者:
L. Oliker
SPRITE: A Fast Parallel SNP Detection Pipeline
SPRITE:快速并行 SNP 检测流程
- DOI:
10.1007/978-3-319-41321-1_9 - 发表时间:
2016 - 期刊:
- 影响因子:3.9
- 作者:
Vasudevan Rengasamy;Kamesh Madduri - 通讯作者:
Kamesh Madduri
SNAP (Small-World Network Analysis and Partitioning) Framework
SNAP(小世界网络分析和分区)框架
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Kamesh Madduri - 通讯作者:
Kamesh Madduri
Kamesh Madduri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kamesh Madduri', 18)}}的其他基金
Collaborative Research: PPoSS: Planning: Extreme-scale Sparse Data Analytics
协作研究:PPoSS:规划:超大规模稀疏数据分析
- 批准号:
2119236 - 财政年份:2021
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: Planning: A Multilayer Network (MLN) Community Infrastructure for Data, Interaction, Visualization, and Software (MLN-DIVE)
合作研究:CCRI:规划:数据、交互、可视化和软件的多层网络 (MLN) 社区基础设施 (MLN-DIVE)
- 批准号:
2120361 - 财政年份:2021
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
XPS: FULL: DSD: End-to-end Acceleration of Genomic Workflows on Emerging Heterogeneous Supercomputers
XPS:完整:DSD:新兴异构超级计算机上基因组工作流程的端到端加速
- 批准号:
1439057 - 财政年份:2014
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
CAREER: Algorithmic and Software Foundations for Large-Scale Graph Analysis
职业:大规模图形分析的算法和软件基础
- 批准号:
1253881 - 财政年份:2013
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403409 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant