NSF Convergence Accelerator: Symposium on Big Data and AI-Driven Disaster Management for Planning, Response, Recovery, and Resiliency
NSF 融合加速器:大数据和人工智能驱动的灾害管理规划、响应、恢复和复原力研讨会
基本信息
- 批准号:1956285
- 负责人:
- 金额:$ 9.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2021-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project supports efforts to organize and host a workshop to expand collaboration between stakeholders wishing to more effectively use big data and artificial intelligence tools to more effectively prepare for, respond to, and recover from natural disasters. The United States experienced more than sixteen natural hazards causing greater than a billion dollars of impact each in 2017 alone, and many predictions point to more frequent and more severe disasters. Because of this organizational and research efforts are directed toward improving planning, immediate response, and resiliency against natural disasters. However, those efforts are often siloed based on the type of disaster (e.g. wildfires vs. landslides). An additional challenge is understanding and using the explosion of technological capabilities that provide so many new data sources, including physical (e.g., sensors, internet-of-things tools, drones), cyber (e.g., hazard databases, open government data), and social (e.g. microblog streams) data of various modalities (text/images/videos). This workshop will identify areas of future research and inter-organizational collaboration that are needed to transform big data, artificial intelligence, and machine learning tools into actionable knowledge for all types of disaster management. This workshop will bring together 30-40 stakeholders including practitioners (e.g. first responders, local/state/federal government), academia (including fields of computer, social, physical sciences. and engineering), and industry (for-profit, non-profit) to discuss the information and data technology needs for all phases of disaster resilience, from planning to response to recovery. The workshop will identify major research challenges / opportunities and the potential for the research areas to transition to practical use in the short term. These insights will help describe the potential for this area to serve as a future topic for the NSF Convergence Accelerator. Big data harnessed with artificial intelligence (AI) tools are needed to improve productivity, efficiency, and decision making in disaster preparedness and response, but big data and AI are also relevant to many other challenges our society is facing. Therefore, this workshop should also provide an example of how disparate data and tools may be integrated for planning and decision support. This effort builds upon investments made by other programs at NSF, including Critical Resilient Interdependent Infrastructure Systems and Processes (CRISP), Interdisciplinary Research in Hazards and Disasters (Hazard-SEES), and Smart & Connected Communities (S&CC), as well as investments by many other U.S. federal agencies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本项目支持组织和举办研讨会,以扩大希望更有效地利用大数据和人工智能工具更有效地准备、应对和恢复自然灾害的利益相关者之间的合作。仅在2017年,美国就经历了16次以上的自然灾害,每次造成的损失都超过10亿美元,许多预测表明灾害会更频繁、更严重。正因为如此,组织和研究努力的方向是改进计划、即时反应和对自然灾害的恢复能力。然而,这些努力往往是基于灾害类型(例如野火与山体滑坡)而孤立的。另一个挑战是理解和利用技术能力的爆炸式增长,这些技术能力提供了如此多的新数据源,包括物理(如传感器、物联网工具、无人机)、网络(如灾害数据库、公开政府数据)和各种模式(文本/图像/视频)的社交(如微博流)数据。本次研讨会将确定将大数据、人工智能和机器学习工具转化为适用于所有类型灾害管理的可操作知识所需的未来研究和组织间合作领域。本次研讨会将汇集30-40名利益相关者,包括从业人员(如急救人员、地方/州/联邦政府)、学术界(包括计算机、社会、物理科学领域)。以及工程)和工业(营利性和非营利性)讨论从规划到响应到恢复的所有阶段的灾难恢复能力的信息和数据技术需求。研讨会将确定主要的研究挑战/机会,以及研究领域在短期内转化为实际应用的潜力。这些见解将有助于描述该领域作为NSF融合加速器未来主题的潜力。大数据与人工智能(AI)工具相结合,可以提高备灾和救灾的生产力、效率和决策能力,但大数据和人工智能也与我们社会面临的许多其他挑战相关。因此,本次研讨会还应提供一个示例,说明如何将不同的数据和工具集成到规划和决策支持中。这项工作建立在NSF其他项目的投资基础上,包括关键弹性相互依赖基础设施系统和过程(CRISP)、灾害和灾害跨学科研究(Hazard-SEES)和智能连接社区(S&;CC),以及许多其他美国联邦机构的投资。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amit Sheth其他文献
Grounding From an AI and Cognitive Science Lens
从人工智能和认知科学的角度出发
- DOI:
10.1109/mis.2024.3366669 - 发表时间:
2024 - 期刊:
- 影响因子:6.4
- 作者:
Goonmeet Bajaj;V. Shalin;Srinivasan Parthasarathy;Amit Sheth;Amit Sheth - 通讯作者:
Amit Sheth
Causal Event Graph-Guided Language-based Spatiotemporal Question Answering
因果事件图引导的基于语言的时空问答
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kaushik Roy;Alessandro Oltramari;Yuxin Zi;Chathurangi Shyalika;Vignesh Narayanan;Amit Sheth - 通讯作者:
Amit Sheth
Cognitive manufacturing: definition and current trends
- DOI:
10.1007/s10845-024-02429-9 - 发表时间:
2024-06-20 - 期刊:
- 影响因子:7.400
- 作者:
Fadi El Kalach;Ibrahim Yousif;Thorsten Wuest;Amit Sheth;Ramy Harik - 通讯作者:
Ramy Harik
Ki-Cook: Clustering Multimodal Cooking Representations Through Ki-Cook: Clustering Multimodal Cooking Representations Through Knowledge-infused Learning Knowledge-infused Learning
Ki-Cook:通过知识注入学习对多模态烹饪表示进行聚类 Ki-Cook:通过知识注入学习对多模态烹饪表示进行聚类 知识注入学习
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Thommen Karimpanal George;R. Venkataramanan;Swati Padhee;Saini Rohan;Rao Ronak;Anirudh Kaoshik 4;Sundara Rajan;Amit Sheth - 通讯作者:
Amit Sheth
RDR: the Recap, Deliberate, and Respond Method for Enhanced Language Understanding
RDR:增强语言理解的回顾、深思熟虑和回应方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yuxin Zi;Hariram Veeramani;Kaushik Roy;Amit Sheth - 通讯作者:
Amit Sheth
Amit Sheth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amit Sheth', 18)}}的其他基金
EAGER: Knowledge-guided neurosymbolic AI with guardrails for safe virtual health assistants
EAGER:知识引导的神经符号人工智能,带有安全虚拟健康助手的护栏
- 批准号:
2335967 - 财政年份:2023
- 资助金额:
$ 9.95万 - 项目类别:
Standard Grant
EAGER: Advancing Neuro-symbolic AI with Deep Knowledge-infused Learning
EAGER:通过深度知识注入学习推进神经符号人工智能
- 批准号:
2133842 - 财政年份:2021
- 资助金额:
$ 9.95万 - 项目类别:
Standard Grant
TWC SBE: Medium: Context-Aware Harassment Detection on Social Media
TWC SBE:媒介:社交媒体上的情境感知骚扰检测
- 批准号:
2013801 - 财政年份:2019
- 资助金额:
$ 9.95万 - 项目类别:
Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
- 批准号:
1956009 - 财政年份:2019
- 资助金额:
$ 9.95万 - 项目类别:
Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
- 批准号:
1761931 - 财政年份:2018
- 资助金额:
$ 9.95万 - 项目类别:
Standard Grant
III: Travel Fellowships for Students from U.S. Universities to Attend ISWC 2016
三:美国大学学生参加 ISWC 2016 的旅费奖学金
- 批准号:
1622628 - 财政年份:2016
- 资助金额:
$ 9.95万 - 项目类别:
Standard Grant
PFI:AIR - TT: Market Driven Innovations and Scaling up of Twitris- A System for Collective Social Intelligence
PFI:AIR - TT:市场驱动的创新和 Twitris 的扩展——集体社交智能系统
- 批准号:
1542911 - 财政年份:2015
- 资助金额:
$ 9.95万 - 项目类别:
Standard Grant
TWC SBE: Medium: Context-Aware Harassment Detection on Social Media
TWC SBE:媒介:社交媒体上的情境感知骚扰检测
- 批准号:
1513721 - 财政年份:2015
- 资助金额:
$ 9.95万 - 项目类别:
Standard Grant
I-Corps: Towards Commercialization of Twitris- a system for collective intelligence
I-Corps:迈向 Twitris 的商业化——集体智慧系统
- 批准号:
1343041 - 财政年份:2013
- 资助金额:
$ 9.95万 - 项目类别:
Standard Grant
SoCS: Collaborative Research: Social Media Enhanced Organizational Sensemaking in Emergency Response
SoCS:协作研究:社交媒体增强应急响应中的组织意识
- 批准号:
1111182 - 财政年份:2011
- 资助金额:
$ 9.95万 - 项目类别:
Standard Grant
相似海外基金
NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
- 批准号:
2343806 - 财政年份:2024
- 资助金额:
$ 9.95万 - 项目类别:
Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 9.95万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
- 批准号:
2344472 - 财政年份:2024
- 资助金额:
$ 9.95万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 9.95万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
- 批准号:
2344256 - 财政年份:2024
- 资助金额:
$ 9.95万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
- 批准号:
2344357 - 财政年份:2024
- 资助金额:
$ 9.95万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
- 批准号:
2344305 - 财政年份:2024
- 资助金额:
$ 9.95万 - 项目类别:
Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
- 批准号:
2344426 - 财政年份:2024
- 资助金额:
$ 9.95万 - 项目类别:
Standard Grant
NSF Convergence Accelerator, Track K: Mapping the nation's wetlands for equitable water quality, monitoring, conservation, and policy development
NSF 融合加速器,K 轨道:绘制全国湿地地图,以实现公平的水质、监测、保护和政策制定
- 批准号:
2344174 - 财政年份:2024
- 资助金额:
$ 9.95万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
- 批准号:
2344228 - 财政年份:2024
- 资助金额:
$ 9.95万 - 项目类别:
Standard Grant