EAGER: Advancing Neuro-symbolic AI with Deep Knowledge-infused Learning
EAGER:通过深度知识注入学习推进神经符号人工智能
基本信息
- 批准号:2133842
- 负责人:
- 金额:$ 14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The first wave of AI termed symbolic AI, focused on explicit knowledge. The current second wave of AI is termed statistical AI. The deep learning techniques have been able to exploit large amounts of data and massive computational power to improve upon human levels of performance in narrowly defined tasks. Separately, knowledge graphs emerged as a powerful tool to capture and exploit an extensive amount and variety of explicit knowledge to make algorithms better understand the content, and enable the next generation of data processing, such as in semantic search. Now, we herald towards the third wave of AI built on what is termed as the neuro-symbolic approach that combines the strengths of statistical and symbolic AI. Combining the respective powers and benefits of using knowledge graphs and deep learning is particularly attractive. This has led to the development of an approach we have called knowledge-infused (deep) learning. This project will advance the currently limited forms of combining the knowledge graphs and deep learning, called shallow and semi-diffusion, with a more advanced form called deep-infusion, that will support stronger interleaving of more variety of knowledge at different levels of abstraction with layers in a deep learning architecture.This project will investigate the deep knowledge-infusion strategy in two substantial ways. The first is to infuse knowledge of different types from knowledge graphs in the deep learning pipeline. For example, in natural language processing, we will investigate the incorporation of linguistic, common sense, broad-based and domain-specific knowledge. The second is to infuse stratified knowledge representing different levels of abstractions, such as low levels of abstractions contained in raw data measurements that focus on the physical features of an object, and higher levels of abstractions that capture more conceptual aspects of the object, such as the object's functionality in an application. Each deep network layer may take a different type of knowledge representing the intended level of abstraction at that layer. For example in a transformer, we can reparameterize different transformer blocks (layers) such that the transformer block will take a different type of knowledge representing the intended level of abstraction at that layer. Furthermore, the deep infusion pipeline can generate explanations for the outcomes of the deep-learning pipeline from the knowledge graph at the appropriate layer leading to a clear picture of the contextual connection between parts of the input. Both layered abstraction and explanation modules would be highly significant contributions towards improving the state of machine intelligence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第一波人工智能被称为符号人工智能,专注于显式知识。目前的第二波人工智能被称为统计人工智能。深度学习技术已经能够利用大量的数据和巨大的计算能力来提高人类在狭义任务中的表现水平。另外,知识图作为一种强大的工具出现,可以捕获和利用大量和各种显式知识,使算法更好地理解内容,并实现下一代数据处理,例如语义搜索。现在,我们迎来了第三次人工智能浪潮,它建立在所谓的神经符号方法之上,结合了统计和符号人工智能的优势。结合使用知识图和深度学习的各自功能和优势特别有吸引力。这导致了我们称之为知识注入(深度)学习的方法的发展。该项目将推进知识图谱和深度学习相结合的有限形式,称为浅扩散和半扩散,以及更高级的形式称为深度注入,这将支持不同抽象级别的更多种类的知识与深度学习架构中的层进行更强的交织。该项目将从两个方面研究深度知识注入策略。第一个是将来自知识图谱的不同类型的知识注入深度学习管道。例如,在自然语言处理中,我们将研究语言,常识,广泛和特定领域知识的结合。第二个是注入分层的知识,表示不同层次的抽象,如低层次的抽象包含在原始数据的测量,专注于一个对象的物理特征,和更高层次的抽象,捕捉更多的概念方面的对象,如对象的功能在应用程序中。每个深度网络层可以采用表示该层处的预期抽象级别的不同类型的知识。例如,在Transformer中,我们可以重新参数化不同的Transformer块(层),以便Transformer块将采用不同类型的知识,表示该层的预期抽象级别。此外,深度注入管道可以在适当的层从知识图生成对深度学习管道的结果的解释,从而清楚地了解输入部分之间的上下文连接。分层抽象和解释模块都将对改善机器智能状态做出非常重要的贡献。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tutorial: Causal AI for Web and Health Care.
教程:网络和医疗保健的因果人工智能。
- DOI:10.1145/3543873.3587713
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Usha Lokala, Kaushik Roy
- 通讯作者:Usha Lokala, Kaushik Roy
A Computational Approach to Understand Mental Health from Reddit: Knowledge-Aware Multitask Learning Framework
Reddit 上了解心理健康的计算方法:知识感知多任务学习框架
- DOI:10.1609/icwsm.v16i1.19322
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Lokala, Usha;Srivastava, Aseem;Dastidar, Triyasha Ghosh;Chakraborty, Tanmoy;Akhtar, Md Shad;Panahiazar, Maryam;Sheth, Amit
- 通讯作者:Sheth, Amit
Learning to Automate Follow-up Question Generation using Process Knowledge for Depression Triage on Reddit Posts
- DOI:10.18653/v1/2022.clpsych-1.12
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Shrey Gupta;Anmol Agarwal;Manas Gaur;Kaushik Roy;Vignesh Narayanan;P. Kumaraguru;Amit P. Sheth
- 通讯作者:Shrey Gupta;Anmol Agarwal;Manas Gaur;Kaushik Roy;Vignesh Narayanan;P. Kumaraguru;Amit P. Sheth
CausalKG: Causal Knowledge Graph Explainability Using Interventional and Counterfactual Reasoning
- DOI:10.1109/mic.2021.3133551
- 发表时间:2022-01
- 期刊:
- 影响因子:3.2
- 作者:Utkarshani Jaimini;A. Sheth
- 通讯作者:Utkarshani Jaimini;A. Sheth
Demo Alleviate: Demonstrating Artificial Intelligence Enabled Virtual Assistance for Telehealth: The Mental Health Case
演示 Alleviate:展示人工智能支持的远程医疗虚拟援助:心理健康案例
- DOI:10.1609/aaai.v37i13.27085
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Roy, Kaushik;Khandelwal, Vedant;Goswami, Raxit;Dolbir, Nathan;Malekar, Jinendra;Sheth, Amit
- 通讯作者:Sheth, Amit
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amit Sheth其他文献
Grounding From an AI and Cognitive Science Lens
从人工智能和认知科学的角度出发
- DOI:
10.1109/mis.2024.3366669 - 发表时间:
2024 - 期刊:
- 影响因子:6.4
- 作者:
Goonmeet Bajaj;V. Shalin;Srinivasan Parthasarathy;Amit Sheth;Amit Sheth - 通讯作者:
Amit Sheth
Causal Event Graph-Guided Language-based Spatiotemporal Question Answering
因果事件图引导的基于语言的时空问答
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kaushik Roy;Alessandro Oltramari;Yuxin Zi;Chathurangi Shyalika;Vignesh Narayanan;Amit Sheth - 通讯作者:
Amit Sheth
Cognitive manufacturing: definition and current trends
- DOI:
10.1007/s10845-024-02429-9 - 发表时间:
2024-06-20 - 期刊:
- 影响因子:7.400
- 作者:
Fadi El Kalach;Ibrahim Yousif;Thorsten Wuest;Amit Sheth;Ramy Harik - 通讯作者:
Ramy Harik
Ki-Cook: Clustering Multimodal Cooking Representations Through Ki-Cook: Clustering Multimodal Cooking Representations Through Knowledge-infused Learning Knowledge-infused Learning
Ki-Cook:通过知识注入学习对多模态烹饪表示进行聚类 Ki-Cook:通过知识注入学习对多模态烹饪表示进行聚类 知识注入学习
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Thommen Karimpanal George;R. Venkataramanan;Swati Padhee;Saini Rohan;Rao Ronak;Anirudh Kaoshik 4;Sundara Rajan;Amit Sheth - 通讯作者:
Amit Sheth
RDR: the Recap, Deliberate, and Respond Method for Enhanced Language Understanding
RDR:增强语言理解的回顾、深思熟虑和回应方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yuxin Zi;Hariram Veeramani;Kaushik Roy;Amit Sheth - 通讯作者:
Amit Sheth
Amit Sheth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amit Sheth', 18)}}的其他基金
EAGER: Knowledge-guided neurosymbolic AI with guardrails for safe virtual health assistants
EAGER:知识引导的神经符号人工智能,带有安全虚拟健康助手的护栏
- 批准号:
2335967 - 财政年份:2023
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
NSF Convergence Accelerator: Symposium on Big Data and AI-Driven Disaster Management for Planning, Response, Recovery, and Resiliency
NSF 融合加速器:大数据和人工智能驱动的灾害管理规划、响应、恢复和复原力研讨会
- 批准号:
1956285 - 财政年份:2020
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
TWC SBE: Medium: Context-Aware Harassment Detection on Social Media
TWC SBE:媒介:社交媒体上的情境感知骚扰检测
- 批准号:
2013801 - 财政年份:2019
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
- 批准号:
1956009 - 财政年份:2019
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
- 批准号:
1761931 - 财政年份:2018
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
III: Travel Fellowships for Students from U.S. Universities to Attend ISWC 2016
三:美国大学学生参加 ISWC 2016 的旅费奖学金
- 批准号:
1622628 - 财政年份:2016
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
PFI:AIR - TT: Market Driven Innovations and Scaling up of Twitris- A System for Collective Social Intelligence
PFI:AIR - TT:市场驱动的创新和 Twitris 的扩展——集体社交智能系统
- 批准号:
1542911 - 财政年份:2015
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
TWC SBE: Medium: Context-Aware Harassment Detection on Social Media
TWC SBE:媒介:社交媒体上的情境感知骚扰检测
- 批准号:
1513721 - 财政年份:2015
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
I-Corps: Towards Commercialization of Twitris- a system for collective intelligence
I-Corps:迈向 Twitris 的商业化——集体智慧系统
- 批准号:
1343041 - 财政年份:2013
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
SoCS: Collaborative Research: Social Media Enhanced Organizational Sensemaking in Emergency Response
SoCS:协作研究:社交媒体增强应急响应中的组织意识
- 批准号:
1111182 - 财政年份:2011
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
相似海外基金
Advancing Governance and Resilience for Climate Adaptation through Cultural Heritage (AGREE)
通过文化遗产促进气候适应的治理和抵御能力(同意)
- 批准号:
AH/Z000017/1 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Research Grant
Advancing Child and Youth-led Climate Change Education with Country
与国家一起推进儿童和青少年主导的气候变化教育
- 批准号:
DP240100968 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Discovery Projects
Governing Sustainable Futures: Advancing the use of Participatory Mechanisms for addressing Place-based Contestations of Sustainable Living
治理可持续未来:推进利用参与机制来解决基于地方的可持续生活竞赛
- 批准号:
ES/Z502789/1 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Research Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
HSI Implementation and Evaluation Project: Green Chemistry: Advancing Equity, Relevance, and Environmental Justice
HSI 实施和评估项目:绿色化学:促进公平、相关性和环境正义
- 批准号:
2345355 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
AUC-GRANTED: Advancing Transformation of the Research Enterprise through Shared Resource Support Model for Collective Impact and Synergistic Effect.
AUC 授予:通过共享资源支持模型实现集体影响和协同效应,推进研究企业转型。
- 批准号:
2341110 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Cooperative Agreement
ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
- 批准号:
2406511 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Planning: Advancing Discovery on a Sustainable National Research Enterprise
规划:推进可持续国家研究企业的发现
- 批准号:
2412406 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414607 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Photonic-Enabled THz Duplex Metasurface: Advancing Communication and Sensing
光子太赫兹双工超表面:推进通信和传感
- 批准号:
24K17324 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists