CAS: Improving the Efficiency of Supported Palladium Catalysts for Methane Complete Combustion Using Monodisperse Nanocrystals

CAS:利用单分散纳米晶体提高甲烷完全燃烧的负载型钯催化剂的效率

基本信息

  • 批准号:
    1956300
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Developing catalysts for the complete oxidation of methane is important to avoid emissions of this powerful greenhouse gas while taking advantage of it as an energy resource. Recent studies show that removing methane from the atmosphere could reduce greenhouse gas potential to pre-industrial levels, thus resulting in atmospheric restoration. Currently, palladium is the best metal to perform this reaction, but it is not well understood how to improve its activity to make better use of this expensive metal. In this project, Dr. Cargnello of Stanford University is developing an understanding of how palladium activates the C-H bonds in methane and oxidizes it completely to carbon dioxide and water. Using precisely controlled catalytic materials prepared from colloidal nanocrystals, Dr. Cargnello is uncovering novel details about the catalytic behavior of palladium and its optimal utilization. Dr. Cargnello is actively engaged in efforts to increase diversity in the Stanford School of Engineering through research experiences with undergraduates, high-school students, and teachers from diverse backgrounds. These activities, which include trips to high schools to inform younger students about STEM and chemical engineering opportunities, have the goal to encourage diverse students to consider careers in these fields.With funding from the Chemical Catalysis Program of the Division of Chemistry, Dr. Cargnello of Stanford University is developing a fundamental understanding of the chemistry of supported palladium in the catalytic total methane combustion. Efficient use of palladium catalysts will help to decrease emissions of this powerful greenhouse gas. Many questions related to the complex palladium oxidation state chemistry as a function of reaction conditions, its correlation with support materials, the presence of promoters, and catalyst stability at high temperature and in the presence of water remain debated. All these aspects are key to fully understand catalyst behavior, and to find ways to further increase Pd efficiency and utilization. The use of precise nanocrystals as building blocks of uniform catalysts is a key focus in this project in order to identify Pd active phase, oxidation state, and structure under relevant reaction conditions; understand Pd deactivation; and how promoting phases change the structure and oxidation state of Pd. The catalytic studies are supported by collaborative efforts using in-situ and operando spectroscopy and DFT calculations in collaboration with staff scientists at SLAC National Laboratory. Dr. Cargnello is actively engaged in efforts to increase diversity in the School of Engineering and inform younger generations about STEM and chemical engineering opportunities, to encourage diverse students to consider a career in the science and engineering fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
开发完全氧化甲烷的催化剂对于避免这种强大的温室气体的排放,同时利用它作为一种能源资源非常重要。最近的研究表明,从大气中去除甲烷可以将温室气体潜力降低到工业化前的水平,从而导致大气恢复。目前,钯是进行该反应的最佳金属,但如何提高其活性以更好地利用这种昂贵的金属尚不清楚。在这个项目中,斯坦福大学的Cargnello博士正在研究钯是如何激活甲烷中的碳氢键并将其完全氧化成二氧化碳和水的。使用由胶体纳米晶体制备的精确控制的催化材料,Cargnello博士揭示了钯的催化行为及其最佳利用的新细节。Cargnello博士通过对来自不同背景的本科生、高中生和教师的研究经验,积极致力于增加斯坦福工程学院的多样性。这些活动包括前往高中,向年轻学生介绍STEM和化学工程的机会,目的是鼓励不同的学生考虑在这些领域从事职业。在化学系化学催化项目的资助下,斯坦福大学的Cargnello博士正在发展对催化甲烷全燃烧中负载钯化学的基本理解。钯催化剂的有效使用将有助于减少这种强大的温室气体的排放。关于复杂钯氧化态化学的许多问题作为反应条件的函数,它与载体材料的相关性,促进剂的存在,以及催化剂在高温和水存在下的稳定性仍然存在争议。这些都是充分了解催化剂行为,进一步提高钯效率和利用率的关键。使用精确的纳米晶体作为均匀催化剂的组成部分是本项目的重点,以确定Pd在相关反应条件下的活性相、氧化态和结构;了解Pd失活;促进相如何改变Pd的结构和氧化态。催化研究得到了与SLAC国家实验室工作人员合作使用原位和操作光谱和DFT计算的合作努力的支持。Cargnello博士积极致力于增加工程学院的多样性,并告知年轻一代有关STEM和化学工程的机会,以鼓励不同的学生考虑在科学和工程领域的职业生涯。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Colloidally Engineered Pd and Pt Catalysts Distinguish Surface- and Vapor-Mediated Deactivation Mechanisms
  • DOI:
    10.1021/acscatal.2c04683
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Jinwon Oh;A. Beck;E. Goodman;Luke T. Roling;A. Boucly;L. Artiglia;F. Abild-Pedersen;J. V. van Bokhoven;M. Cargnello
  • 通讯作者:
    Jinwon Oh;A. Beck;E. Goodman;Luke T. Roling;A. Boucly;L. Artiglia;F. Abild-Pedersen;J. V. van Bokhoven;M. Cargnello
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matteo Cargnello其他文献

Temperature-dependent solid electrolyte interphase reactions drive performance in lithium-mediated nitrogen reduction to ammonia
温度依赖性固体电解质界面反应驱动锂介导的氮还原制氨性能
  • DOI:
    10.1016/j.joule.2024.101810
  • 发表时间:
    2025-03-19
  • 期刊:
  • 影响因子:
    35.400
  • 作者:
    Peter Benedek;Yamile E. Cornejo-Carrillo;Alden H. O’Rafferty;Valerie A. Niemann;Sang-Won Lee;Eric J. McShane;Matteo Cargnello;Adam C. Nielander;Thomas F. Jaramillo
  • 通讯作者:
    Thomas F. Jaramillo
How co-products enable clean hydrogen
副产品如何实现清洁氢气
  • DOI:
    10.1038/s41893-025-01557-1
  • 发表时间:
    2025-04-21
  • 期刊:
  • 影响因子:
    27.100
  • 作者:
    Henry Moise;Matteo Cargnello
  • 通讯作者:
    Matteo Cargnello

Matteo Cargnello的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matteo Cargnello', 18)}}的其他基金

Collaborative Research: EAGER: Measuring the Kinetics of Gas-Generating Electrolysis through the Collective Modes of Bubble Evolution
合作研究:EAGER:通过气泡演化的集体模式测量气体发生电解的动力学
  • 批准号:
    1732157
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Archer: Next-generation unstructured data access for hospitals and clinical trial sponsors, delivering efficiency, reducing costs and improving care
Archer:为医院和临床试验申办者提供下一代非结构化数据访问,提高效率、降低成本并改善护理
  • 批准号:
    10096804
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Collaborative R&D
Optimising CNC Machine Tool Coolant Fluid condition to prolong usage and efficiency of an expensive essential resource thereby reducing cost, improving production quality and protecting operators using a unique and innovative Coolant Monitoring Analyser
使用独特和创新的冷却液监测分析仪优化数控机床冷却液条件,延长昂贵的重要资源的使用时间和效率,从而降低成本、提高生产质量并保护操作员
  • 批准号:
    10075142
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant for R&D
Improving the efficiency of CRISPR gene editing in cells
提高细胞中CRISPR基因编辑的效率
  • 批准号:
    LP210200125
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Linkage Projects
CRII: CNS: A Systematic Multi-Task Learning Framework for Improving Deep Learning Efficiency on Edge Platforms
CRII:CNS:用于提高边缘平台深度学习效率的系统多任务学习框架
  • 批准号:
    2245765
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SBIR Phase I: Improving indoor agriculture grow light efficiency with adaptive light shaping
SBIR 第一阶段:通过自适应光整形提高室内农业种植光效率
  • 批准号:
    2304339
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
III: Small: A Big Data and Machine Learning Approach for Improving the Efficiency of Two-sided Online Labor Markets
III:小:提高双边在线劳动力市场效率的大数据和机器学习方法
  • 批准号:
    2311582
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Improving the efficiency of light to kinetic energy conversion by pulse shaping of laser pulses that generate bubbles.
通过对产生气泡的激光脉冲进行脉冲整形,提高光到动能的转换效率。
  • 批准号:
    23K03279
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of Surrogate model for improving efficiency of Monte Carlo methods
提高蒙特卡罗方法效率的代理模型研究
  • 批准号:
    23H01095
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Improving Dairy Farm Efficiency Using Novel Automation Processes
使用新型自动化流程提高奶牛场效率
  • 批准号:
    10053200
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Collaborative R&D
SHF: Small: Improving Efficiency of Vision Transformers via Software-Hardware Co-Design and Acceleration
SHF:小型:通过软硬件协同设计和加速提高视觉变压器的效率
  • 批准号:
    2233893
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了