CRII: CNS: A Systematic Multi-Task Learning Framework for Improving Deep Learning Efficiency on Edge Platforms

CRII:CNS:用于提高边缘平台深度学习效率的系统多任务学习框架

基本信息

  • 批准号:
    2245765
  • 负责人:
  • 金额:
    $ 17.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Multi-task learning is a subfield of machine learning in which the data is trained with a shared model to solve different tasks simultaneously. Multi-task learning highly reduces the number of parameters in the machine learning models and thus reduces the computational and storage requirements. For example, there are multiple tasks to be done in real-time in self-driving cars, including object detection and depth estimation. If these tasks can be trained on a single model with shared parameters, the model size and the inference time can be highly reduced. This project aims to further compress the model used for multi-task learning as the model size of a single deep neural network is still a critical challenge to many computation systems, especially for edge platforms. This project proposes an approach to learn the difficulty of every task and maintain the performance of the most difficult task when compressing a multi-task learning model. It increases the potential in the compression rate with acceptable performance for all the tasks as the performance of the most difficult task needs to be guaranteed to provide a satisfactory user experience. This project also designs an efficient multi-task federated learning approach for edge platforms. It improves the convergence rate of multi-task federated learning and reduces the communication costs in every iteration. Finally, this project proposes to solve an algorithm-hardware co-design problem to maximize the implementation efficiency of the compressed multi-task DNN models on edge platforms.The files of compressed DNN models and the ideas on efficient DNN training and implementation may be useful to researchers who focus on improving the computation efficiency of DNN models on edge platforms and other hardware platforms.This project will involve undergraduate and graduate students in the research. The research achievements of this project will be incorporated into a current senior-level undergraduate course, a new planned advanced-level graduate course, and seminars for both undergraduate and graduate students. There are also planned research demonstrations during the workshops and summer camps for the K-12 students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Multi-task learning is a subfield of machine learning in which the data is trained with a shared model to solve different tasks simultaneously. Multi-task learning highly reduces the number of parameters in the machine learning models and thus reduces the computational and storage requirements. For example, there are multiple tasks to be done in real-time in self-driving cars, including object detection and depth estimation. If these tasks can be trained on a single model with shared parameters, the model size and the inference time can be highly reduced. This project aims to further compress the model used for multi-task learning as the model size of a single deep neural network is still a critical challenge to many computation systems, especially for edge platforms. This project proposes an approach to learn the difficulty of every task and maintain the performance of the most difficult task when compressing a multi-task learning model. It increases the potential in the compression rate with acceptable performance for all the tasks as the performance of the most difficult task needs to be guaranteed to provide a satisfactory user experience. This project also designs an efficient multi-task federated learning approach for edge platforms. It improves the convergence rate of multi-task federated learning and reduces the communication costs in every iteration. Finally, this project proposes to solve an algorithm-hardware co-design problem to maximize the implementation efficiency of the compressed multi-task DNN models on edge platforms.The files of compressed DNN models and the ideas on efficient DNN training and implementation may be useful to researchers who focus on improving the computation efficiency of DNN models on edge platforms and other hardware platforms.This project will involve undergraduate and graduate students in the research. The research achievements of this project will be incorporated into a current senior-level undergraduate course, a new planned advanced-level graduate course, and seminars for both undergraduate and graduate students. There are also planned research demonstrations during the workshops and summer camps for the K-12 students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tianyun Zhang其他文献

Adaptive hydrogel loaded with pre-coordinated stem cells for enhanced osteoarthritis therapy
负载预先协调干细胞的适应性水凝胶用于增强骨关节炎治疗
  • DOI:
    10.1016/j.bioactmat.2025.05.018
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    20.300
  • 作者:
    Chenyuan Gao;Wenli Dai;Dingge Liu;Xinyu Wang;Tianyun Zhang;Bingzheng Yu;Yingjie Yu;Hua Tian;Xiaoping Yang;Qing Cai
  • 通讯作者:
    Qing Cai
Interfacial shear properties between water-castable engineered cementitious composites (WECC) and concrete substrate
  • DOI:
    10.1016/j.conbuildmat.2024.139237
  • 发表时间:
    2024-12-13
  • 期刊:
  • 影响因子:
  • 作者:
    Tianyun Zhang;Shuling Gao
  • 通讯作者:
    Shuling Gao
A highly pyridinic N-doped carbon from macroalgae with multifunctional use toward CO2 capture and electrochemical applications
来自大型藻类的高度吡啶氮掺杂碳,具有用于二氧化碳捕获和电化学应用的多功能用途
  • DOI:
    10.1007/s10853-018-2927-7
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Meng Ren;Tianyun Zhang;Ying Wang;Ziyang Jia;Jinjun Cai
  • 通讯作者:
    Jinjun Cai
Cholecystokinin neurons in the spinal trigeminal nucleus interpolaris regulate mechanically evoked predatory hunting in male mice
脊髓三叉神经中极核中的胆囊收缩素神经元调节雄性小鼠机械诱发的掠夺性狩猎
  • DOI:
    10.1038/s41467-025-57771-0
  • 发表时间:
    2025-03-14
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Dandan Geng;Yaning Li;Bo Yang;Li Zhang;Huating Gu;Tianyun Zhang;Zijie Zhao;Hui Liu;Qingzhuo Cui;Rong Zheng;Peng Cao;Fan Zhang
  • 通讯作者:
    Fan Zhang
Regulating surface bonding network and inner crystal structure to boost Zn storage capacity of flexible MnOsub2/sub cathode
调控表面键合网络和内部晶体结构以提高柔性MnO₂阴极的锌存储容量
  • DOI:
    10.1016/j.cej.2025.161927
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    13.200
  • 作者:
    Tianyun Zhang;Jiaojiao Wu;Yanci Wang;Lirong Zhang;Fen Ran
  • 通讯作者:
    Fen Ran

Tianyun Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

IL-17A通过STAT5影响CNS2区域甲基化抑制调节性T细胞功能在银屑病发病中的作用和机制研究
  • 批准号:
    82304006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miR-20a通过调控CD4+T细胞焦亡促进CNS炎性脱髓鞘疾病的发生及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血浆CNS来源外泌体中寡聚磷酸化α-synuclein对PD病程的提示研究
  • 批准号:
    82101506
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于脑微血管内皮细胞模型的毒力岛4在单增李斯特菌CNS炎症中的作用及机制研究
  • 批准号:
    32160834
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
胱硫醚-β-合成酶介导小胶质细胞极化致糖皮质激素CNS毒性作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
生物工程化微泡干扰MAPK通路重编程CNS微环境起始脑胶质瘤免疫检查点抑制剂的应答研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
百合中“桉树脑盒”挥发物生物合成关键酶基因CNS的功能解析
  • 批准号:
    32002082
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
大气细颗粒物通过NF-κB/LBP-9信号通路诱导小胶质细胞激活加剧CNS脱髓鞘损伤的作用机制研究
  • 批准号:
    82071396
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
新型化合物组合抑制STAT6维持Foxp3-CNS2去甲基化产生稳定的iTreg细胞诱导小鼠肾移植免疫耐受的机制研究
  • 批准号:
    82070773
  • 批准年份:
    2020
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
基于菌群-肠-脑轴探讨柚皮素改善CNS髓鞘脱失的机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    50 万元
  • 项目类别:

相似海外基金

CRII: CNS: IoT-aware Federated On-Device Intelligence
CRII:CNS:物联网感知的联合设备上智能
  • 批准号:
    2418308
  • 财政年份:
    2024
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
CNS Core: Small: Core Scheduling Techniques and Programming Abstractions for Scalable Serverless Edge Computing Engine
CNS Core:小型:可扩展无服务器边缘计算引擎的核心调度技术和编程抽象
  • 批准号:
    2322919
  • 财政年份:
    2024
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
CRII: CNS: Supporting Resilient Perception in Autonomous Cyber-physical Systems
CRII:CNS:支持自主网络物理系统中的弹性感知
  • 批准号:
    2348349
  • 财政年份:
    2024
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
CNS炎症における抗炎症性アストロサイト誘導のパスウェイ解析から見出される創薬標的
通过中枢神经系统炎症中抗炎星形胶质细胞诱导的通路分析发现药物发现靶点
  • 批准号:
    23K27330
  • 财政年份:
    2024
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CNS Core: Small: Network Wide Sensing by Leveraging Cellular Communication Networks
CNS 核心:小型:利用蜂窝通信网络进行全网络传感
  • 批准号:
    2343469
  • 财政年份:
    2024
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
  • 批准号:
    2230829
  • 财政年份:
    2023
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
CRII: CNS: Toward a Sustainable and Intelligent Air-Ground IoT Framework for Remote Monitoring
CRII:CNS:迈向可持续、智能的远程监控空地物联网框架
  • 批准号:
    2348818
  • 财政年份:
    2023
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了