Non-invasive automated wound analysis via deep learning neural networks
通过深度学习神经网络进行非侵入性自动伤口分析
基本信息
- 批准号:10183917
- 负责人:
- 金额:$ 42.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-05 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAmericanAnimal ModelArchitectureArtificial IntelligenceBiochemicalBiopsyCell CountCell ProliferationCell physiologyCellular InfiltrationCellularityClassificationClinicClinicalClinical assessmentsCollagenCollectionConsumptionContrast MediaCoupledDataDebridementDermatologicDermisDiabetic Foot UlcerDiseaseElastinElderlyEpidermisExcisionFeedbackFibrosisFluorescenceFunctional disorderFutureGenerationsGeometryGoalsGranulation TissueHair follicle structureHealthHistologicHistologyHistopathologyImageImage AnalysisInjuryKeratinLabelLaboratory ResearchLipidsMachine LearningManualsMeasuresMetabolicMetabolismMethodsNADHOperative Surgical ProceduresOptical BiopsyOutcomePathologistPsychological TransferResearchResearch PersonnelSeriesSkinSkin TissueSourceStainsStructureTechniquesTechnologyTestingThree-Dimensional ImagingTimeTissuesTrainingVisualWound Infectionanalysis pipelineautomated analysisautomated segmentationbasecell motilitycell typechronic woundcofactorconvolutional neural networkcostcrosslinkdeep learningdeep neural networkhistological imagehistological stainsimage processingimaging Segmentationin silicoin vivoin vivo optical imaginginsightmicroscopic imagingmultiphoton microscopyneural networknon-healing woundsnon-invasive imagingoptical imagingpentosidinepoint of careproduct developmentpublic health relevancequantitative imagingradiological imagingsecond harmonicskin woundtooltwo-photonvirtualwoundwound carewound closurewound healing
项目摘要
Project Summary:
Each year millions of Americans develop chronic wounds, which require advanced wound care that has been
estimated to cost $50 Billion annually. However, our understanding of chronic wounds and how to treat them
has been limited by a lack of established methods to objectively characterize and measure wound features.
Detailed assessments of wounds in the clinic and research laboratory often occur through histological analysis
of tissue biopsies. This information can provide insight into cellular migration into the wound, cellular proliferation
at the edge of the wound, infection, and fibrosis. However, the collection, creation, and analysis of histology
sections is inherently invasive, time-consuming, and qualitative. The goal of this proposal is to develop an image
analysis pipeline that can provide automated quantitative analysis of wounds and lay the groundwork for a non-
invasive real-time “optical biopsy” that can provide information identical to standard histopathology. Our central
hypothesis is that artificial intelligence approaches using deep learning convolutional neural networks can be
coupled with in vivo multiphoton microscopy and existing quantitative image analysis methods to achieve this
goal with the same accuracy as traditional biopsies with histological staining and expert analysis. In Aim 1, we
will training and validate neural networks capable of segmenting and quantifying standard wound histology based
on training from three independent wound healing research labs. In Aim 2, we will adapt this network to perform
segmentation and quantification of in vivo label-free multiphoton microscopy images of skin wounds to provide
rapid readouts of wound organization and metabolic function. Finally in Aim 3, we will develop and validate a
network capable of generating virtual histology images from our stain-free non-invasive in vivo MPM images,
which can be coupled with the networks developed in Aim 1 and 2 to provide a comprehensive assessment of
wound microstructure and metabolism. In the near-term, this proposal will develop a series of robust analysis
tools that can be applied to existing H&E-stained or unstained skin tissue sections commonly studied by wound
healing researchers. In the long-term, the combination of label-free multiphoton microscopy and machine
learning-based image analysis will enable completely non-invasive wound histology that can be performed in
real-time at the point of care to guide debridement and wound care.
项目总结:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kyle Patrick Quinn其他文献
Kyle Patrick Quinn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kyle Patrick Quinn', 18)}}的其他基金
Non-invasive automated wound analysis via deep learning neural networks
通过深度学习神经网络进行非侵入性自动伤口分析
- 批准号:
10631196 - 财政年份:2021
- 资助金额:
$ 42.48万 - 项目类别:
Acquisition of rodent metabolic and behavioral phenotyping system
啮齿动物代谢和行为表型系统的获取
- 批准号:
10799014 - 财政年份:2021
- 资助金额:
$ 42.48万 - 项目类别:
Acquisition of a confocal Raman microscope for molecular fingerprinting of cells and tissue
获取用于细胞和组织分子指纹分析的共焦拉曼显微镜
- 批准号:
10582119 - 财政年份:2021
- 资助金额:
$ 42.48万 - 项目类别:
Non-invasive automated wound analysis via deep learning neural networks
通过深度学习神经网络进行非侵入性自动伤口分析
- 批准号:
10460416 - 财政年份:2021
- 资助金额:
$ 42.48万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 42.48万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 42.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 42.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 42.48万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 42.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 42.48万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 42.48万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 42.48万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 42.48万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 42.48万 - 项目类别:
Standard Grant














{{item.name}}会员




