Strong Coupling in Microcavities for Enhancing Photostability of High-Performance Organic Semiconductors

微腔中的强耦合可增强高性能有机半导体的光稳定性

基本信息

  • 批准号:
    1956431
  • 负责人:
  • 金额:
    $ 38.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

In this project funded by the Chemical Structure, Dynamics, and Mechanisms A (CSDM-A) program of the Chemistry Division, Professor Oksana Ostroverkhova of Oregon State University is exploring a new route for improving the stability of carbon-based electronics (organic semiconductors) when they are exposed to light. Organic semiconductors are of interest due to their low cost and tunable properties. A broad range of applications, from photovoltaics to three-dimensional displays, have been demonstrated. Wide commercialization of organic electronics has been hindered by their relatively low stability when exposed to common environmental factors such as light and air. In this project, very thin films of organic semiconductor materials are placed in tiny microcavities, where they interact with light, creating hybrid light-matter states known as polaritons. Professor Ostroverkhova and her students are studying the effects of these polaritons on the speed and outcome of chemical reactions that cause the organic semiconductors to deteriorate. They are using light-absorption and theoretical modeling to study how properties of polaritons could be used to slow down degradation of the organic semiconductor molecules and to promoting self-healing if degradation does occur. The project integrates fundamental chemistry and physics with materials design and device technologies and provides educational resources and infrastructure for students involved in the project. Graduate and undergraduate students gain experience in the emergent field of polariton chemistry, and in advanced spectroscopy and numerical modeling techniques.The PI carries out a systematic investigation of how the properties of hybrid light-matter states and of the “dark” states (due to molecules not coupled to the cavity) control the rates of chemical reactions responsible for photodegradation and recovery of organic semiconductors. High-performance organic semiconductor model systems are used to quantify strong exciton-photon coupling-controlled enhancement of photostability depending on the photodegradation pathway in non-interacting (“isolated”) molecules and in molecular aggregates and to establish the feasibility for cavity-coupled vibrational states to promote reversal of the photodegradation. The broader impact of this project is in its potential impact on resolving the stability bottleneck of organic electronic devices and on the development of polaritonic devices, as well as student training, as mentioned above.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学部化学结构、动力学和机制A(CSDM-A)项目资助的这一项目中,俄勒冈州州立大学的Oksana Ostroverkhova教授正在探索一条提高碳基电子器件(有机半导体)在暴露于光时的稳定性的新途径。 有机半导体由于其低成本和可调性质而受到关注。 从光致发光到三维显示器的广泛应用已经得到证实。 有机电子产品的广泛商业化受到其暴露于常见环境因素如光和空气时相对较低的稳定性的阻碍。 在这个项目中,有机半导体材料的非常薄的薄膜被放置在微小的微腔中,在那里它们与光相互作用,产生被称为极化激元的混合光物质状态。 Ostroverkhova教授和她的学生正在研究这些极化激元对导致有机半导体恶化的化学反应的速度和结果的影响。 他们正在使用光吸收和理论建模来研究如何利用极化激元的特性来减缓有机半导体分子的降解,并在降解发生时促进自我修复。 该项目将基础化学和物理学与材料设计和设备技术相结合,并为参与该项目的学生提供教育资源和基础设施。 研究生和本科生在极化激元化学的新兴领域获得经验,并在先进的光谱学和数值模拟技术。PI进行混合轻物质状态和“暗”状态(由于分子不耦合到腔)的属性如何控制负责有机半导体的光降解和恢复的化学反应速率的系统调查。 高性能的有机半导体模型系统被用来量化强激子-光子耦合控制的增强光稳定性依赖于在非相互作用(“隔离”)的分子和分子聚集体中的光降解途径,并建立腔耦合的振动状态,以促进逆转的光降解的可行性。 该项目的更广泛影响在于其对解决有机电子器件的稳定性瓶颈和极化激元器件的开发以及学生培训的潜在影响,如上所述。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exciton Polariton-Enhanced Photodimerization of Functionalized Tetracene
功能化并四苯的激子极化增强光二聚化
  • DOI:
    10.1021/acs.jpcc.1c06881
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Puro, Richard;Van Schenck, Jonathan D.;Center, Reid;Holland, Emma K.;Anthony, John E.;Ostroverkhova, Oksana
  • 通讯作者:
    Ostroverkhova, Oksana
Exciton Polaritons Reveal “Hidden” Populations in Functionalized Pentacene Films
激子极化子揭示功能化并五苯薄膜中的“隐藏”族群
  • DOI:
    10.1021/acs.jpcc.1c08257
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Van Schenck, Jonathan D.;Goldthwaite, Winston T.;Puro, Richard;Anthony, John E.;Ostroverkhova, Oksana
  • 通讯作者:
    Ostroverkhova, Oksana
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oksana Ostroverkhova其他文献

Role of temperature in controlling performance of photorefractive organic glasses.
温度在控制光折变有机玻璃性能中的作用。
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Oksana Ostroverkhova;Oksana Ostroverkhova;M. He;R. Twieg;W. Moerner
  • 通讯作者:
    W. Moerner
Excitons and polaritons in singlet fission materials: Photophysics, photochemistry, and optoelectronics
  • DOI:
    10.1557/s43577-024-00761-2
  • 发表时间:
    2024-08-08
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Oksana Ostroverkhova;Winston Goldthwaite;Roshell Lamug
  • 通讯作者:
    Roshell Lamug

Oksana Ostroverkhova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Oksana Ostroverkhova', 18)}}的其他基金

Designing light-matter hybrid states for high-performance organic (opto)electronics
设计高性能有机(光)电子学的光-物质混合态
  • 批准号:
    1808258
  • 财政年份:
    2018
  • 资助金额:
    $ 38.26万
  • 项目类别:
    Standard Grant
SusChEM: Naturally produced fungal compounds for sustainable (opto)electronics
SusChEM:用于可持续(光)电子产品的天然真菌化合物
  • 批准号:
    1705099
  • 财政年份:
    2017
  • 资助金额:
    $ 38.26万
  • 项目类别:
    Standard Grant
Designing Intermolecular Interactions for High-Performance Small-Molecule Bulk Heterojunctions
设计高性能小分子体异质结的分子间相互作用
  • 批准号:
    1207309
  • 财政年份:
    2012
  • 资助金额:
    $ 38.26万
  • 项目类别:
    Continuing Grant
CAREER: Charge Carrier Dynamics in Organic Semiconductors: from Macroscopic to Microscopic Level
职业:有机半导体中的载流子动力学:从宏观到微观水平
  • 批准号:
    0748671
  • 财政年份:
    2008
  • 资助金额:
    $ 38.26万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于外泌体TRPV4-Nox4 coupling途径探讨缺氧微环境调控鼻咽癌转移侵袭和血管新生的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Molecular imprinting strategy to rationally design porous solid acid catalysts for C-C coupling chemistries
职业:分子印迹策略合理设计用于 C-C 偶联化学的多孔固体酸催化剂
  • 批准号:
    2340993
  • 财政年份:
    2024
  • 资助金额:
    $ 38.26万
  • 项目类别:
    Continuing Grant
CAS: Designing Copper-based Multi-metallic Single-atom Alloys for Cross Coupling Reactions through Combined Surface Science and Catalytic Investigations
CAS:通过结合表面科学和催化研究设计用于交叉偶联反应的铜基多金属单原子合金
  • 批准号:
    2400227
  • 财政年份:
    2024
  • 资助金额:
    $ 38.26万
  • 项目类别:
    Continuing Grant
FDSS Track 1: Integrating Research and Education in Magnetosphere-Ionosphere-Atmosphere Coupling at Clemson University
FDSS Track 1:克莱姆森大学磁层-电离层-大气耦合研究与教育相结合
  • 批准号:
    2347149
  • 财政年份:
    2024
  • 资助金额:
    $ 38.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
  • 批准号:
    2349872
  • 财政年份:
    2024
  • 资助金额:
    $ 38.26万
  • 项目类别:
    Standard Grant
Unravelling coupling between multiscale tissue mechanics and heart valve calcification
揭示多尺度组织力学与心脏瓣膜钙化之间的耦合
  • 批准号:
    EP/X027163/2
  • 财政年份:
    2024
  • 资助金额:
    $ 38.26万
  • 项目类别:
    Fellowship
Solar Eclipse Workshop: Observations of April 2024 Total Solar Eclipse and Community Discussion of Multi-Scale Coupling in Geospace Environment; Arlington, Texas; April 8-10, 2024
日食研讨会:2024年4月日全食观测及地球空间环境多尺度耦合的社区讨论;
  • 批准号:
    2415082
  • 财政年份:
    2024
  • 资助金额:
    $ 38.26万
  • 项目类别:
    Standard Grant
Methylation of mRNA as a coupling mechanism between diet, metabolism and the circadian clock.
mRNA 甲基化作为饮食、新陈代谢和生物钟之间的耦合机制。
  • 批准号:
    MR/Y003896/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.26万
  • 项目类别:
    Fellowship
Electrocatalytic Cross-Coupling Reactions with Heterogeneous Single Atom Catalysts
多相单原子催化剂的电催化交叉偶联反应
  • 批准号:
    EP/Y002628/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.26万
  • 项目类别:
    Research Grant
Next Generation Plasmon Coupling Nanosensors
下一代等离子耦合纳米传感器
  • 批准号:
    2344525
  • 财政年份:
    2024
  • 资助金额:
    $ 38.26万
  • 项目类别:
    Standard Grant
Quantum Hall plasmon resonator-based qubit sensing and multi-qubit coupling
基于量子霍尔等离子体谐振器的量子位传感和多量子位耦合
  • 批准号:
    24K06915
  • 财政年份:
    2024
  • 资助金额:
    $ 38.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了