Electrocatalytic Cross-Coupling Reactions with Heterogeneous Single Atom Catalysts
多相单原子催化剂的电催化交叉偶联反应
基本信息
- 批准号:EP/Y002628/1
- 负责人:
- 金额:$ 19.56万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Fine chemicals make up the largest portion of the global chemicals market with their revenues expected to grow to $220bn by 2024. Examples of important classes of fine chemicals, are pharmaceuticals, agrochemicals, flavours and fragrances and speciality materials (e.g., polymers). With the increasing attention on energy usage, environmental impact and safety, there is an urgent need to develop new, mild and efficient synthetic process for sustainable fine chemicals synthesis. There has been a remarkable renaissance of electrochemical catalysis, with researchers exploring how fine chemicals can be synthesised with using electrictricity as a reagent. These energy efficient, electricity-driven processes can be easily integrated with renewable energy sources and avoid the use of dangerous and toxic chemicals, which makes them a powerful green tool for chemical synthesis. However, at present, electrocatalytic methods typically utilise so called homogeneous catalytic systems, which requires transition metal catalysts, whereby all of the catalyst is fully dissolved in the reaction mixtures. These systems often suffer from high catalyst loadings due to their limited stability under the reaction conditions. Furthermore, the expensive homogeneous catalyst can only be used once due to the challenges associated with catalyst separation and recycling. With the rapid growth of nanoscience, heterogeneous catalysts have been exploited to tackle the aforementioned problems. Although they are stable and conveniently recyclable, their overall catalytic efficiencies are usually inferior to their homogeneous counterparts. In recent years, a new class of heterogeneous catalysts, namely single-atom catalysts (SACs), which are emerging as a new frontier in catalysis science. In this case, the active metal centre of the catalyst exists as isolated single atoms, which are stabilized by the support material., SACs can serve as a bridge between homogeneous and heterogeneous catalysts with the possibility of integrating the merits of both types of catalysts such as high activity, selectivity, stability and reusability. Indeed, many breakthroughs in clean energy conversion reactions (e.g., oxygen reduction, hydrogen evolution, CO2 reduction) using SACs has been reported recently. These have demonstrated their great potential in electrochemical applications, but electrocatalytic fine chemical synthesis using SACs remains unexplored. As the most frequently used class of reaction in pharmaceutical synthesis, the so called cross-coupling reactions were recognized in 2010 by the Nobel Prize in Chemistry. In this project, we will exploit the inherent properties of SACs to revolutionise fine chemical synthesis by creating completely new heterogeneous electrochemical cross-coupling reactions as proof-of-concept examples. Through newly forged collaborations with Prof. Yanqiang Huang from Dalian Institute of Chemical Physics (DICP, the birthplace of SACs concept), Prof. Karl Ryder (UoL) and MOF Technologies, novel nickel based SACs will be synthesized using metal organic frameworks (MOFs) as precursors, and the mechanisms of these SACs catalysed reactions will be studied using modern material characterization techniques This project is highly interdisciplinary and at the intersection of cutting-edge organic synthesis, electrochemistry, materials science and state-of-the-art heterogeneous catalysis. Success in the area will bring both economic and environmental benefits and enable the manufacture of fine chemicals, such as pharmaceuticals, to be prepared using more sustainable processes. The understanding of catalyst structure-performance relationships and reaction mechanisms will enable the design of new SACs systems, that can be exploited for a range of chemical reactions, broadening its impact.
精细化学品占全球化学品市场的最大份额,预计到2024年其收入将增长至2200亿美元。重要的精细化学品类别包括药品、农用化学品、香料和香料以及特种材料(如聚合物)。随着人们对能源利用、环境影响和安全的日益关注,迫切需要开发新的、温和高效的合成工艺来实现可持续的精细化学品合成。随着研究人员探索如何利用电性作为试剂来合成精细化学品,电化学催化出现了显著的复兴。这些高能效、电力驱动的过程可以很容易地与可再生能源相结合,避免使用危险和有毒的化学品,这使它们成为化学合成的强大绿色工具。然而,目前的电催化方法通常使用所谓的均相催化体系,这需要过渡金属催化剂,即所有催化剂都完全溶解在反应混合物中。由于这些体系在反应条件下的稳定性有限,经常会遇到催化剂负载量高的问题。此外,由于与催化剂分离和回收相关的挑战,昂贵的均相催化剂只能使用一次。随着纳米科学的迅速发展,多相催化剂应运而生。虽然它们很稳定,而且可以方便地回收,但它们的整体催化效率通常低于它们的均相对应物。近年来,一类新的多相催化剂,即单原子催化剂(SACS),正在成为催化科学的新前沿。在这种情况下,催化剂的活性金属中心以孤立的单原子形式存在,由载体材料稳定。SACS可以作为均相和非均相催化剂之间的桥梁,有可能结合两种催化剂的高活性、选择性、稳定性和可重复使用的优点。事实上,最近报道了使用SACS在清洁能源转换反应(例如,氧气还原、放氢、二氧化碳还原)方面的许多突破。这些都显示了其在电化学应用中的巨大潜力,但利用SACS进行电催化精细化学合成仍未被开发。交叉偶联反应作为药物合成中最常用的反应类型,于2010年被诺贝尔化学奖表彰。在这个项目中,我们将通过创造全新的多相电化学交叉偶联反应作为概念验证的例子,利用SACS的固有特性来革新精细化学合成。通过与来自大连化学物理研究所(SACS概念的发源地)的黄彦强教授、卡尔·莱德教授(UOL)和MOF技术公司的最新合作,将以金属有机骨架(MOF)为前驱体合成新型镍基SACS,并利用现代材料表征技术研究这些SACS催化反应的机理。该项目是高度跨学科的,集前沿有机合成、电化学、材料科学和最先进的多相催化技术于一体。该领域的成功将带来经济和环境效益,并使制药等精细化学品的制造能够使用更可持续的工艺进行准备。对催化剂结构-性能关系和反应机理的了解将有助于设计可用于一系列化学反应的新的SACS系统,扩大其影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qun Cao其他文献
Investigation of water bubble nucleation by using molecular dynamics simulation
利用分子动力学模拟研究水气泡成核
- DOI:
10.1016/j.molliq.2021.116037 - 发表时间:
2021-07 - 期刊:
- 影响因子:6
- 作者:
Yujie Chen;Xuejiao Chen;Bo Yu;Wenjing Zhou;Qun Cao;Wenquan Tao - 通讯作者:
Wenquan Tao
BUPT-MCPRL at TRECVID 2020: INS and ActEV
北京邮电大学MCPRL参加TRECVID 2020:INS和ActEV
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Xiyu Zhao;Qun Cao;Xiangqian Cheng;Jun;Yunhao Du;Binyu Zhang;Zhicheng Zhao;Yanyun Zhao;Fei Su - 通讯作者:
Fei Su
An empirical study on continual usage intention of microblogging: the case of Sina
微博持续使用意愿的实证研究——以新浪为例
- DOI:
10.1108/20408741211283755 - 发表时间:
2012 - 期刊:
- 影响因子:2.8
- 作者:
Zhanbo Zhao;Qun Cao - 通讯作者:
Qun Cao
Decoupling manufacturing from application in additive manufactured antimicrobial materials.
将制造与增材制造抗菌材料的应用脱钩。
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:6.6
- 作者:
D. Wales;Sara Miralles;Isabel Franco‐Castillo;Jamie M. Cameron;Qun Cao;Erno Karjalainen;Jesum Alves Fernandes;Graham N. Newton;Scott G. Mitchell;Víctor Sans - 通讯作者:
Víctor Sans
3D printing for customized carbon electrodes
用于定制碳电极的 3D 打印
- DOI:
10.1016/j.coelec.2023.101228 - 发表时间:
2023-04-01 - 期刊:
- 影响因子:6.900
- 作者:
Yuanyu Chang;Qun Cao;B.Jill Venton - 通讯作者:
B.Jill Venton
Qun Cao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
胰岛素样生长信号介导的肺巨噬细胞和上皮细胞cross-tolk通过核自噬参与慢性气道炎症形成的机制研究
- 批准号:JCZRYB202500229
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于NLRP3炎性小体与自噬Cross-talk探讨心康冲剂干预心肌纤维化的机制研究
- 批准号:2025JJ80174
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
PKM2琥珀酰化修饰介导癌细胞与血小板间Cross-talk调控胆管癌侵袭转移的研究
- 批准号:JCZRYB202500379
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于破骨-成骨细胞Cross-Talk探讨内固定物存留对关节软骨退变的影响及补肾强骨治法的科学内涵
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
三痹汤激活线粒体自噬影响免疫细胞Cross talk延缓椎间盘退变的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
多环芳烃(PAHs )介导的癌细胞和Th17细胞“cross-talk”所
致免疫抑制反应在胶质瘤增殖侵袭中的作用及毒理学机制研
究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
PGK1乙酰化修饰介导癌细胞与TAMs间Cross-talk调控胆囊癌EMT的研究
- 批准号:82373032
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
生长激素受体通过脂肪酸介导的肝脏-脂肪Cross-talk影响脂质内稳态的研究
- 批准号:82370866
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
线粒体ClpP激动剂通过铁死亡-免疫调控cross-talk治疗急性髓细胞白血病的机制研究
- 批准号:82370171
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于“cross-β折叠”结构形成理论解析面筋蛋白淀粉样纤维的形成机制
- 批准号:32372365
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
相似海外基金
CAS: Designing Copper-based Multi-metallic Single-atom Alloys for Cross Coupling Reactions through Combined Surface Science and Catalytic Investigations
CAS:通过结合表面科学和催化研究设计用于交叉偶联反应的铜基多金属单原子合金
- 批准号:
2400227 - 财政年份:2024
- 资助金额:
$ 19.56万 - 项目类别:
Continuing Grant
RUI: Mechanisms of C-F and S-F Bond Activation and Cross-coupling with Bidentate N-heterocyclic Carbene Nickel Catalysts
RUI:双齿N-杂环卡宾镍催化剂的C-F和S-F键活化及交叉偶联机理
- 批准号:
2350537 - 财政年份:2024
- 资助金额:
$ 19.56万 - 项目类别:
Standard Grant
The influence of biophysical coupling and cross-scale interactions on ecosystems of the Plum Island LTER
生物物理耦合和跨尺度相互作用对普拉姆岛LTER生态系统的影响
- 批准号:
2308605 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
Standard Grant
A new Iron Age! Making Iron complexes fit for C-C cross-coupling catalysis.
新的铁器时代!
- 批准号:
DE230100978 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
Discovery Early Career Researcher Award
Data-driven design of Next Generation Cross-Coupling catalysts by Ligand Parameterisation: A Combined Experimental and Computational Approach.
通过配体参数化进行下一代交叉偶联催化剂的数据驱动设计:实验和计算相结合的方法。
- 批准号:
2896325 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
Studentship
Harnessing Electron-Donor-Acceptor Complexes to Enable Photo-Induced Metal-Free Cross-Coupling Reactions
利用电子供体-受体配合物实现光诱导无金属交叉偶联反应
- 批准号:
10715256 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
Iron-Catalyzed Cross Coupling: Quantum Control on Multi-spin Pathways
铁催化交叉偶联:多自旋路径的量子控制
- 批准号:
23H01959 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Stereodivergent Approaches to Pd-Catalyzed Cross-Coupling Reactions
Pd 催化交叉偶联反应的立体发散方法
- 批准号:
2247622 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
Standard Grant
Iron and photoredox dual catalysis for sustainable cross-coupling reactions
铁和光氧化还原双重催化可持续交叉偶联反应
- 批准号:
2905062 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
Studentship
Collaborative Research: EAGER: Quantum Manufacturing: Vertical Coupling and Cross-Talk Shielding of Superconducting Quantum Devices
合作研究:EAGER:量子制造:超导量子器件的垂直耦合和串扰屏蔽
- 批准号:
2240246 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
Standard Grant