Quantitative Stochastic Homogenization and Renormalization Methods
定量随机均匀化和重正化方法
基本信息
- 批准号:2000200
- 负责人:
- 金额:$ 34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project is focused on the development of new mathematical ideas and tools for understanding the macroscopic properties of physical systems with many small-scale irregularities. Composite materials, for example, are manufactured by intermingling two or more constituent materials and often have very different physical properties (heat or electrical conduction, for example) from the individual components. Surprisingly, the properties of the composite material are typically not a simple average of those of its components--it matters greatly how the (microscopic) intermingling is arranged. We want to understand precisely how the large number of microscopic interactions give rise to the macroscopic behavior of such systems, to be able to predict the macroscopic properties of the system by carefully looking at the microscopic arrangement of a sample, and to know exactly how large such a sample must be before our predictions are accurate. We proceed by developing and analyzing idealized mathematical models that display the key features and complexity of real physical systems, but still simple enough that they can be studied mathematically. Very often, our models are partial differential equations with stochastic coefficients--that is, the underlying microscopic behavior of the system is assumed to be random--and the goal is to understand the statistics of the system. Our objective is to develop mathematical approaches that are (i) informed by the physics of the systems, (ii) robust--they can help us solve a variety of other, similar problems arising in, for example, statistical physics and probability theory, and (iii) quantitative--they lead to quantitative estimates of the uncertainty and insight into the development of numerical algorithms for simulation and prediction. This project provides research training opportunities for graduate students.Obtaining an "averaged" partial differential equation that describes the large-scale behavior of an underlying highly heterogeneous equation with many degrees of freedom (for instance, one with random coefficients) is referred to as "homogenization" in the mathematical literature. The homogenized equation is typically much simpler than the "true" heterogeneous one, and hence easier to work with. It is therefore important to understand precisely how well the homogenized equation approximates the true equation, and this is the goal of homogenization theory. Mathematicians have recently developed a complete quantitative theory of stochastic homogenization for elliptic equations, and this theory has already been shown to have some surprising and important applications to probability theory and statistical mechanics. The present project aims to continue in this direction, by applying and developing homogenization techniques for gradient lattice models and related models in statistical physics, to the study of hypoelliptic diffusions arising in kinetic theory (modeling gases and plasmas) and toward understanding the behavior of diffusions forced by random vector fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目的重点是发展新的数学思想和工具,以理解具有许多小尺度不规则性的物理系统的宏观性质。例如,复合材料是通过混合两种或更多种组成材料而制造的,并且通常具有与单个组分非常不同的物理特性(例如热或电传导)。令人惊讶的是,复合材料的性能通常不是其组分的简单平均值-它非常重要(微观)混合如何安排。我们希望精确地理解大量的微观相互作用是如何引起这样的系统的宏观行为的,能够通过仔细观察样品的微观排列来预测系统的宏观性质,并且确切地知道在我们的预测准确之前这样的样品必须有多大。我们通过发展和分析理想化的数学模型来进行,这些模型显示了真实的物理系统的关键特征和复杂性,但仍然足够简单,可以用数学方法进行研究。通常,我们的模型是具有随机系数的偏微分方程-也就是说,假设系统的基本微观行为是随机的-目标是了解系统的统计数据。我们的目标是开发数学方法,这些方法(i)由系统的物理学所告知,(ii)鲁棒性-它们可以帮助我们解决各种其他类似的问题,例如,统计物理和概率论,以及(iii)定量-它们导致对不确定性的定量估计,并深入了解模拟和预测的数值算法的发展。本项目为研究生提供研究训练的机会。数学文献中,将描述具有多个自由度(例如随机系数)的高度非均匀性方程的大尺度行为的“平均化”偏微分方程称为“均匀化”。均匀化方程通常比“真正的”非均匀方程简单得多,因此更容易处理。因此,重要的是要精确地理解均匀化方程近似真实方程的程度,这就是均匀化理论的目标。数学家最近发展了一个完整的定量理论的随机均匀化椭圆方程,这个理论已经被证明有一些令人惊讶的和重要的应用概率论和统计力学。本项目的目的是继续朝这个方向努力,在统计物理学中应用和发展梯度格点模型和相关模型的均匀化技术,动力学理论中亚椭圆扩散的研究(模拟气体和等离子体)该奖项反映了NSF的法定使命,并已被认为是值得通过评估使用的支持,基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Armstrong其他文献
The mutation in miR-128b blocks processing and induces functional consequences
miR-128b 的突变会阻碍加工并引发功能性后果
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Ai Kotani;Scott Armstrong;and Harvey Lodish;Ai Kotani - 通讯作者:
Ai Kotani
Student Teams Achievement Divisions (STAD) in a twelfth grade classroom: Effect on student achievement and attitude
十二年级课堂上的学生团队成就部门 (STAD):对学生成就和态度的影响
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Scott Armstrong;J. Palmer - 通讯作者:
J. Palmer
Can antitakeover activity really create wealth? Evidence from Australia
反收购活动真的能创造财富吗?
- DOI:
10.1007/bf01739206 - 发表时间:
1994 - 期刊:
- 影响因子:5.4
- 作者:
Scott Armstrong;Helen P. Lange;L. Woo - 通讯作者:
L. Woo
The mutation in microRNA gene is important in tumor biology
microRNA基因突变在肿瘤生物学中很重要
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Ai Kotani;Scott Armstrong;and Harvey Lodish - 通讯作者:
and Harvey Lodish
3028 – THE IDENTIFICATION OF VULNERABILITIES IN CLONAL HEMATOPOIESIS USING A HUMAN MODEL OF TET2 LOSS-OF-FUNCTION
- DOI:
10.1016/j.exphem.2024.104350 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:
- 作者:
Meaghan Boileau;Yufan Shan;Christian Marinaccio;Athina Apazidis;Peter Geon Kim;Benjamin Ebert;Scott Armstrong - 通讯作者:
Scott Armstrong
Scott Armstrong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Armstrong', 18)}}的其他基金
Coarse-graining, Renormalization, and Fractal Homogenization
粗粒度、重整化和分形均匀化
- 批准号:
2350340 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
Renormalization in Statistical Mechanics and Partial Differential Equations
统计力学和偏微分方程的重整化
- 批准号:
1954357 - 财政年份:2020
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
Quantitative Methods for Modeling Properties of Random Media
随机介质属性建模的定量方法
- 批准号:
1700329 - 财政年份:2017
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
- 批准号:
24K06758 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Research Grant
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
- 批准号:
EP/Y033507/1 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Research Grant
Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
- 批准号:
EP/Y033248/1 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Research Grant
Cell factory design: unlocking the Multi-Objective Stochastic meTabolic game (MOST)
细胞工厂设计:解锁多目标随机代谢游戏(MOST)
- 批准号:
EP/X041239/1 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Research Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
- 批准号:
2337427 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
- 批准号:
2339240 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
CAREER: Marine Debris at Coastlines: predicting sources from drift, dispersion, and beaching via experiments and multiscale stochastic models
职业:海岸线的海洋碎片:通过实验和多尺度随机模型预测漂移、分散和搁浅的来源
- 批准号:
2338221 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant














{{item.name}}会员




