Renormalization in Statistical Mechanics and Partial Differential Equations
统计力学和偏微分方程的重整化
基本信息
- 批准号:1954357
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A great variety of mathematical models involve multiple scales: an explicit description of a system's microscopic properties is given, and a challenge is to describe the effective behavior induced by it on much larger scales. In order to predict the correct large-scale effective behavior theoretically, physicists introduced the idea of "renormalization," a systematic technique for implementing a progressive coarsening of the system of interest. The broad goal of research supported by this award is to widen and strengthen the mathematical understanding of this idea. The project provides research training opportunities for graduate students. The past few years have seen great progress on fundamental models that can be represented as partial differential equations with random coefficients. In the present project, the investigator plans to test the versatility and power of the methods developed there on new classes of models, including Langevin dynamics and systems of particles in interaction. The project will take inspiration from renormalization ideas to study mean-field models with disordered interactions, such as spin glasses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
各种各样的数学模型涉及多个尺度:给出了系统微观属性的明确描述,而挑战是在更大的尺度上描述由它引起的有效行为。为了从理论上预测正确的大规模有效行为,物理学家引入了“重整化”的概念,这是一种用于实现感兴趣系统的渐进粗化的系统技术。该奖项支持的研究的总体目标是扩大和加强对这一想法的数学理解。该项目为研究生提供研究培训机会。过去几年,基本模型取得了巨大进展,这些模型可以表示为具有随机系数的偏微分方程。在目前的项目中,研究人员计划测试在新型模型上开发的方法的多功能性和威力,包括朗之万动力学和相互作用的粒子系统。该项目将从重整化思想中汲取灵感,研究具有无序相互作用的平均场模型,例如自旋玻璃。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Free energy upper bound for mean-field vector spin glasses
- DOI:10.1214/22-aihp1292
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:J. Mourrat
- 通讯作者:J. Mourrat
Dynamical Fractional and Multifractal Fields
动态分形场和多重分形场
- DOI:10.1007/s10955-021-02867-2
- 发表时间:2022
- 期刊:
- 影响因子:1.6
- 作者:Apolinário, Gabriel B.;Chevillard, Laurent;Mourrat, Jean-Christophe
- 通讯作者:Mourrat, Jean-Christophe
Local versions of sum-of-norms clustering
- DOI:10.1137/21m1448732
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Alexander Dunlap;J. Mourrat
- 通讯作者:Alexander Dunlap;J. Mourrat
Quantitative homogenization of interacting particle systems
- DOI:10.1214/22-aop1573
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:A. Giunti;Chenlin Gu;J. Mourrat
- 通讯作者:A. Giunti;Chenlin Gu;J. Mourrat
Statistical inference of finite-rank tensors
有限秩张量的统计推断
- DOI:10.5802/ahl.146
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Chen, Hongbin;Mourrat, Jean-Christophe;Xia, Jiaming
- 通讯作者:Xia, Jiaming
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Armstrong其他文献
The mutation in miR-128b blocks processing and induces functional consequences
miR-128b 的突变会阻碍加工并引发功能性后果
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Ai Kotani;Scott Armstrong;and Harvey Lodish;Ai Kotani - 通讯作者:
Ai Kotani
Student Teams Achievement Divisions (STAD) in a twelfth grade classroom: Effect on student achievement and attitude
十二年级课堂上的学生团队成就部门 (STAD):对学生成就和态度的影响
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Scott Armstrong;J. Palmer - 通讯作者:
J. Palmer
Can antitakeover activity really create wealth? Evidence from Australia
反收购活动真的能创造财富吗?
- DOI:
10.1007/bf01739206 - 发表时间:
1994 - 期刊:
- 影响因子:5.4
- 作者:
Scott Armstrong;Helen P. Lange;L. Woo - 通讯作者:
L. Woo
The mutation in microRNA gene is important in tumor biology
microRNA基因突变在肿瘤生物学中很重要
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Ai Kotani;Scott Armstrong;and Harvey Lodish - 通讯作者:
and Harvey Lodish
3028 – THE IDENTIFICATION OF VULNERABILITIES IN CLONAL HEMATOPOIESIS USING A HUMAN MODEL OF TET2 LOSS-OF-FUNCTION
- DOI:
10.1016/j.exphem.2024.104350 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:
- 作者:
Meaghan Boileau;Yufan Shan;Christian Marinaccio;Athina Apazidis;Peter Geon Kim;Benjamin Ebert;Scott Armstrong - 通讯作者:
Scott Armstrong
Scott Armstrong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Armstrong', 18)}}的其他基金
Coarse-graining, Renormalization, and Fractal Homogenization
粗粒度、重整化和分形均匀化
- 批准号:
2350340 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Quantitative Stochastic Homogenization and Renormalization Methods
定量随机均匀化和重正化方法
- 批准号:
2000200 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Quantitative Methods for Modeling Properties of Random Media
随机介质属性建模的定量方法
- 批准号:
1700329 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似海外基金
Exploration of the Nonequilibrium Statistical Mechanics of Turbulent Collisionless Plasmas
湍流无碰撞等离子体的非平衡统计力学探索
- 批准号:
2409316 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Conference: 32nd Annual Midwest Thermodynamics and Statistical Mechanics (MTSM) Conference
会议:第 32 届年度中西部热力学和统计力学 (MTSM) 会议
- 批准号:
2313246 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
EAGER: SSMCDAT2023: Revealing Local Symmetry Breaking in Intermetallics: Combining Statistical Mechanics and Machine Learning in PDF Analysis
EAGER:SSMCDAT2023:揭示金属间化合物中的局部对称性破缺:在 PDF 分析中结合统计力学和机器学习
- 批准号:
2334261 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: Probability and Mathematical Statistical Mechanics
职业:概率和数学统计力学
- 批准号:
2238423 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Development of plastic theory based on statistical mechanics to realize effect of dislocation behavior
发展基于统计力学的塑性理论以实现位错行为的效果
- 批准号:
23K18458 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Theoretical study of ion transport in ZIP8 protein based on statistical mechanics theory of liquids
基于液体统计力学理论的ZIP8蛋白离子输运理论研究
- 批准号:
23K19236 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Collaborative Research: Statistical mechanics of dense suspensions - dynamical correlations and scaling theory
合作研究:稠密悬浮液的统计力学 - 动力学相关性和标度理论
- 批准号:
2228680 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Statistical mechanics of dense suspensions - dynamical correlations and scaling theory
合作研究:稠密悬浮液的统计力学 - 动力学相关性和标度理论
- 批准号:
2228681 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CRCNS: Linking Synaptic Populations and Computation Using Statistical Mechanics
CRCNS:使用统计力学将突触群体和计算联系起来
- 批准号:
10830119 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Many-particle Systems with Singular Interactions: Statistical Mechanics and Mean-field Dynamics
具有奇异相互作用的多粒子系统:统计力学和平均场动力学
- 批准号:
2247846 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant














{{item.name}}会员




