Coulomb Gases and Vortex Systems: Two-Dimensional Physics and Beyond
库仑气体和涡流系统:二维物理及其他
基本信息
- 批准号:2000205
- 负责人:
- 金额:$ 33.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Coulomb electrostatic interaction is one of the fundamental forces in nature, governing how elementary charged particles interact. For example, stars are essentially plasmas - that is gases of positively charged ions and negatively charged electrons attracting and repelling one another according to the Coulomb force. The formation of crystals, which are periodic arrangements of atoms, can be roughly explained via repulsive electrostatic (Coulomb) forces coupled with a binding force. In Physics, a "two-component plasma" is a large collection of positively charged particles and as many negatively charged particles; a "one-component plasma" is a large collection of positively charged particles with the negative particles replaced by a uniform neutralizing background. Such systems are also called "Coulomb gases," and they are quite important in theoretical physics. Physicists predicted that in two-dimensional Coulomb gases, a new intermediate state of matter - formed of dipoles of oppositely charged particles - should exist between the totally ordered (solid) and disordered (liquid) state, once a certain critical temperature is reached. This was a new type of phase transition in statistical physics. It is specific to dimension 2 and an important example of two-dimensional physics. This project is particularly concerned with the analysis of large Coulomb gases in dimension 2 and higher, both one-component and two-component, in the framework of statistical mechanics (that is, with temperature), and using the techniques of mathematical analysis and probability theory. Also motivating such questions are the study of energy levels of large atoms (spectrum of large random matrices), vortices in superconductors and Bose-Einstein condensates, the fractional quantum Hall effect, and more loosely questions in biology or hydrodynamics. The project also contains a component on the mathematical analysis of vortices in superconductors in the context of the famous Ginzburg-Landau model, another and related instance of two-dimensional physics, with the investigation of this phenomenon in dimension 3. This project provides research training opportunities for graduate students. This project is about the mathematical analysis of large systems of points, or lines, with Coulomb interactions. Such systems are ubiquitous in physics models, ranging from quantum mechanics, statistical mechanics to plasma physics and condensed matter physics, but also in random matrix theory and approximation theory. The main part of the proposal concerns the statistical mechanics of classical Coulomb gases. In a first part it deals with positively charged points. The main questions are to investigate the effect of temperature on the local structure of the point configurations, in broad temperature regimes, as well as to understand their possibly universal features. While a lot has been understood in dimension 2, much remains to be done to understand which properties persist in higher dimension, in particular to understand the order of the charge fluctuations and their possibly Gaussian nature, as well as the long-range correlations of the system and free energy expansion. The proposal also aims at understanding how much of the features are specific to the Coulomb interaction by investigating the same questions for Riesz gases. A second part concerns the two-dimensional Coulomb gas with opposite charges (or two-component plasma). This is a very important model, related to the XY model in which a similar transition happens, itself an approximation for two-dimensional systems in condensed matter physics including Josephson junction arrays and thin disordered superconducting granular films. This BKT transition is charcterized by the emergence of dipoles and the transition from exponentially decaying to algebraically decaying correlations. A lot of this behavior is awaiting further mathematical proofs and this is what the project will try to address in the context of the two-component Coulomb gas. Finally the last part of the proposal concerns lines with Coulomb interactions, which arise as vortices in three-dimensional models from superconductivity and superfluidity. The geometry of the lines makes the analysis much more delicate than for points. While many mathematical tools originating in geometric measure theory have been developed for dealing with that aspect, the Coulomb interaction of the lines, the characterization of the onset of vortex lines under an applied magnetic field, and their collective behavior still need to be further investigated. The project's goal is to study all these questions with rigorous mathematical proofs and tools that will mix analysis, PDE, calculus of variations, and probability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
库仑静电相互作用是自然界中的基本力之一,控制着基本带电粒子如何相互作用。例如,恒星本质上是等离子体--即带正电的离子和带负电的电子根据库仑力相互吸引和排斥。晶体的形成是原子的周期性排列,可以通过与结合力耦合的排斥静电(库仑)力来粗略地解释。在物理学中,“双组分等离子体”是大量带正电的粒子和同样多的带负电的粒子的集合;“单组分等离子体”是大量带正电的粒子的集合,其中带负电的粒子被均匀的中和背景所取代。这种系统也被称为“库仑气体”,它们在理论物理学中非常重要。物理学家预测,在二维库仑气体中,一旦达到一定的临界温度,一种新的物质中间态--由带相反电荷的粒子的偶极子形成--应该存在于完全有序的(固体)和无序的(液体)状态之间。这是统计物理学中的一种新型相变。它是二维物理学的一个重要例子。该项目特别关注在统计力学(即温度)的框架内,使用数学分析和概率论技术,分析2维及更高维的单组分和双组分大库仑气体。激发这些问题的还有对大原子能级的研究(大随机矩阵的谱),超导体和玻色-爱因斯坦凝聚体中的涡旋,分数量子霍尔效应,以及生物学或流体力学中更松散的问题。该项目还包括在著名的金兹伯格-朗道模型的背景下对超导体中的涡旋进行数学分析的部分,金兹伯格-朗道模型是二维物理学的另一个相关实例,并在三维中调查这一现象。该项目为研究生提供了研究培训机会。这个项目是关于大型系统的点,或线,与库仑相互作用的数学分析。这种系统在物理模型中无处不在,从量子力学,统计力学到等离子体物理和凝聚态物理,以及随机矩阵理论和近似理论。该提案的主要部分涉及经典库仑气体的统计力学。在第一部分中,它涉及带正电荷的点。主要的问题是调查温度的影响上的局部结构的点配置,在广泛的温度制度,以及了解他们可能的普遍功能。虽然在2维中已经了解了很多,但仍有许多工作要做,以了解哪些性质在更高的维度中持续存在,特别是了解电荷波动的顺序及其可能的高斯性质,以及系统和自由能膨胀的长程相关性。该提案还旨在通过研究Riesz气体的相同问题来了解库仑相互作用的特征。第二部分涉及具有相反电荷的二维库仑气体(或双组分等离子体)。这是一个非常重要的模型,与XY模型相关,XY模型中发生了类似的转变,XY模型本身是凝聚态物理学中二维系统的近似,包括约瑟夫森结阵列和薄的无序超导颗粒膜。这种BKT转变的特点是偶极的出现和从指数衰减到代数衰减的相关性的过渡。许多这种行为正在等待进一步的数学证明,这就是该项目将在双组分库仑气体的背景下试图解决的问题。最后,该建议的最后一部分涉及库仑相互作用的线,这些线在超导性和超流性的三维模型中作为漩涡出现。线的几何形状使分析比点的分析更加精细。虽然许多数学工具起源于几何测量理论已经开发了处理这方面,库仑相互作用的线,在施加磁场下的涡旋线的发病特征,以及他们的集体行为仍然需要进一步研究。该项目的目标是通过严格的数学证明和工具来研究所有这些问题,这些工具将分析、偏微分方程、变分法和概率结合在一起。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermal approximation of the equilibrium measure and obstacle problem
平衡测度和障碍问题的热近似
- DOI:10.5802/afst.1714
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Armstrong, Scott;Serfaty, Sylvia
- 通讯作者:Serfaty, Sylvia
Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature
- DOI:10.1214/22-aihp1285
- 发表时间:2020-03
- 期刊:
- 影响因子:0
- 作者:S. Serfaty
- 通讯作者:S. Serfaty
Mean-field limits of Riesz-type singular flows with possible multiplicative transport noise
具有可能的乘性传输噪声的 Riesz 型奇异流的平均场极限
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:H. Q. Nguyen, M. Rosenzweig
- 通讯作者:H. Q. Nguyen, M. Rosenzweig
Local laws and rigidity for Coulomb gases at any temperature
- DOI:10.1214/20-aop1445
- 发表时间:2019-06
- 期刊:
- 影响因子:0
- 作者:S. Armstrong;S. Serfaty
- 通讯作者:S. Armstrong;S. Serfaty
Crystallization for Coulomb and Riesz interactions as a consequence of the Cohn-Kumar conjecture
科恩-库马尔猜想导致的库仑和里斯相互作用的结晶
- DOI:10.1090/proc/15003
- 发表时间:2020
- 期刊:
- 影响因子:1
- 作者:Petrache, Mircea;Serfaty, Sylvia
- 通讯作者:Serfaty, Sylvia
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sylvia Serfaty其他文献
Relative entropy and modulated free energy without confinement via self-similar transformation
通过自相似变换获得无限制的相对熵和调制自由能
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Matthew Rosenzweig;Sylvia Serfaty - 通讯作者:
Sylvia Serfaty
A two scale $$\Gamma $$ -convergence approach for random non-convex homogenization
随机非凸均匀化的双尺度 Γ 收敛方法
- DOI:
10.1007/s00526-017-1249-y - 发表时间:
2017-10-06 - 期刊:
- 影响因子:2.000
- 作者:
Leonid Berlyand;Etienne Sandier;Sylvia Serfaty - 通讯作者:
Sylvia Serfaty
Sylvia Serfaty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sylvia Serfaty', 18)}}的其他基金
Many-particle Systems with Singular Interactions: Statistical Mechanics and Mean-field Dynamics
具有奇异相互作用的多粒子系统:统计力学和平均场动力学
- 批准号:
2247846 - 财政年份:2023
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
Large systems with repulsive interactions in statistical mechanics, condensed matter physics and PDE
统计力学、凝聚态物理和偏微分方程中具有排斥相互作用的大型系统
- 批准号:
1700278 - 财政年份:2017
- 资助金额:
$ 33.92万 - 项目类别:
Continuing Grant
CAREER: Statics and Dynamics of Singularities In Some Models From Material Science
职业:材料科学某些模型中奇点的静力学和动力学
- 批准号:
0239121 - 财政年份:2003
- 资助金额:
$ 33.92万 - 项目类别:
Continuing Grant
相似海外基金
Increasing farming competitiveness, profitability and resilience by removal of greenhouse gases (R-LEAF): follow-on funding
通过消除温室气体提高农业竞争力、盈利能力和复原力 (R-LEAF):后续资金
- 批准号:
10090632 - 财政年份:2024
- 资助金额:
$ 33.92万 - 项目类别:
Collaborative R&D
LIB Sparks - Gases, sparks and flames - a numerical study of lithium-ion battery failure in closed spaces and its mitigation
LIB Sparks - 气体、火花和火焰 - 封闭空间内锂离子电池故障及其缓解的数值研究
- 批准号:
EP/Y027639/1 - 财政年份:2024
- 资助金额:
$ 33.92万 - 项目类别:
Fellowship
RESEARCH PROPOSAL What is your project title? Development of additive manufactured polymeric seals for low molecular weight gases
研究计划 您的项目名称是什么?
- 批准号:
2908868 - 财政年份:2024
- 资助金额:
$ 33.92万 - 项目类别:
Studentship
Time-Dependent Hydrodynamics in Uniform Fermi Gases
均匀费米气体中的瞬态流体动力学
- 批准号:
2307107 - 财政年份:2023
- 资助金额:
$ 33.92万 - 项目类别:
Continuing Grant
PriSciTemp: Primary spectrometric thermometry for gases
PriSciTemp:气体的初级光谱测温
- 批准号:
10074890 - 财政年份:2023
- 资助金额:
$ 33.92万 - 项目类别:
EU-Funded
BioPro - Low emission protein production from anaerobic digestion gases
BioPro - 通过厌氧消化气体生产低排放蛋白质
- 批准号:
10077731 - 财政年份:2023
- 资助金额:
$ 33.92万 - 项目类别:
Collaborative R&D
Spectroscopic measurements of volcanic gases in volcanic environments
火山环境中火山气体的光谱测量
- 批准号:
2884080 - 财政年份:2023
- 资助金额:
$ 33.92万 - 项目类别:
Studentship
Development of 320x256 pixel metamaterial infrared image sensors for visualizing invisible gases
开发用于可视化不可见气体的 320x256 像素超材料红外图像传感器
- 批准号:
23H01883 - 财政年份:2023
- 资助金额:
$ 33.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Postdoctoral Fellowship: OPP-PRF: Assessing the Contribution of Permafrost-derived Trace Gases in Greenhouse Warming since the Last Glacial Maximum
博士后奖学金:OPP-PRF:评估自末次盛冰期以来永久冻土衍生的微量气体对温室变暖的贡献
- 批准号:
2317931 - 财政年份:2023
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
Study on the characteristics of trace gases in the Venusian atmosphere using satellite solar occultation measurements and ground-based high-resolution spectroscopy
利用卫星掩星测量和地面高分辨率光谱研究金星大气中痕量气体的特征
- 批准号:
23K03480 - 财政年份:2023
- 资助金额:
$ 33.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)