Hodge Filtration, Singularities, and Complex Birational Geometry
霍奇过滤、奇点和复杂双有理几何
基本信息
- 批准号:2000610
- 负责人:
- 金额:$ 33.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project addresses problems of fundamental interest in pure mathematics, and especially in the field of algebraic geometry. Algebraic geometry is one of the oldest branches of mathematics, as people have attempted for a very long time to use algebra in order to understand problems in geometry, and at the same time one that has seen some of the most outstanding modern developments and connections with areas of pure and applied science. The main aim of the project is to connect parts of algebraic and complex geometry that have previously been quite disjoint; in particular, it uses new tools (called Hodge modules), relying heavily on topology and analysis as well, in order to classify geometric shapes and singularities. This approach is generating numerous projects for Ph.D. students and the project provides research training opportunities for graduate students.In more detail, the PI will continue applying the theory of mixed Hodge modules to concrete problems in complex and birational geometry. He will also continue developing the theory of Hodge ideals, in collaboration with M. Mustata. This has been completed for Q-divisors, providing an extension of the theory of multiplier ideas in this setting, but new ideas need to be brought into play in order to obtain a similar picture for ideal sheaves, or for local cohomology. One hopes that this will lead to further interesting applications. In their work the PI and Mustata have already obtained applications regarding the singularities of theta divisors, hypersurfaces in projective space, or minimal exponents. In addition to further consequences along these lines, they will use the proposed extensions in order to study, for instance, effective bounds for linear series, or roots of the Bernstein-Sato polynomial. The PI has also been involved in applying the theory of Hodge modules towards the study of the variation of families smooth projective varieties of varieties, e.g. Brody hyperbolicity or Viehweg-type questions for parameter spaces. He will extend this study to families of singular varieties, especially those that appear in the theory of moduli of higher dimensional varieties according to Kollár and others, perhaps using those Hodge modules that extend variations of mixed Hodge structure. The PI will also continue working towards the classification of subvarieties with minimal cohomology class on principally polarized abelian varieties, and its link with generic vanishing subschemes and with the singularities of theta divisors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目解决了纯数学,特别是代数几何领域的基本问题。代数几何是数学最古老的分支之一,因为人们长期以来一直尝试使用代数来理解几何问题,同时代数几何也见证了一些最杰出的现代发展以及与纯科学和应用科学领域的联系。该项目的主要目的是将以前相当不相交的代数和复杂几何部分连接起来;特别是,它使用新工具(称为 Hodge 模块),并严重依赖拓扑和分析,以便对几何形状和奇点进行分类。这种方法正在为博士生创造大量项目。更详细地说,PI 将继续将混合 Hodge 模理论应用于复杂和双有理几何的具体问题。他还将与 M. Mustata 合作,继续发展霍奇理想理论。这已经针对 Q-除数完成,在这种情况下提供了乘法器思想理论的扩展,但是需要运用新的思想才能获得理想滑轮或局部上同调的类似图像。人们希望这将带来更多有趣的应用。在他们的工作中,PI 和 Mustata 已经获得了有关 θ 约数奇点、射影空间中的超曲面或最小指数的应用。除了这些方面的进一步后果之外,他们还将使用所提出的扩展来研究线性级数的有效界限或伯恩斯坦-佐藤多项式的根等。 PI 还参与应用 Hodge 模块理论来研究家族的变异以及品种的平滑投影变种,例如参数空间的布罗迪双曲性或 Viehweg 型问题。他将把这项研究扩展到奇异簇族,特别是那些出现在 Kollár 等人的高维簇模理论中的簇,也许会使用那些扩展混合 Hodge 结构变体的 Hodge 模。 PI 还将继续致力于对主要极化阿贝尔品种的具有最小上同调类的亚品种进行分类,及其与通用消失子方案和 theta 除数奇异性的联系。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mihnea Popa其他文献
On the base locus of the generalized theta divisor
- DOI:
10.1016/s0764-4442(00)80051-8 - 发表时间:
1999-09-15 - 期刊:
- 影响因子:
- 作者:
Mihnea Popa - 通讯作者:
Mihnea Popa
Mihnea Popa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mihnea Popa', 18)}}的其他基金
Hodge Filtration, Singularities, and Complex Birational Geometry
霍奇过滤、奇点和复杂双有理几何
- 批准号:
2040378 - 财政年份:2020
- 资助金额:
$ 33.6万 - 项目类别:
Continuing Grant
Hodge Theory and Birational Geometry
霍奇理论和双有理几何
- 批准号:
1700819 - 财政年份:2017
- 资助金额:
$ 33.6万 - 项目类别:
Continuing Grant
Cohomological and singularity invariants via Hodge modules and derived equivalences
通过 Hodge 模和导出等价的上同调和奇点不变量
- 批准号:
1405516 - 财政年份:2014
- 资助金额:
$ 33.6万 - 项目类别:
Continuing Grant
Derived Equivalences, Generic Vanishing, and the Structure of Cohomology
导出等价、泛型消失和上同调的结构
- 批准号:
1101323 - 财政年份:2011
- 资助金额:
$ 33.6万 - 项目类别:
Continuing Grant
General Vanishing and Regularity in Derived Categories, Adjoint Ideals and Extension Theorems
派生范畴、伴随理想和可拓定理中的一般消失性和正则性
- 批准号:
0758253 - 财政年份:2008
- 资助金额:
$ 33.6万 - 项目类别:
Continuing Grant
Abelian Varieties, Asymptotic Invariants in Higher Dimensional Geometry, and Moduli of Vector Bundles
阿贝尔簇、高维几何中的渐近不变量以及向量丛的模
- 批准号:
0500985 - 财政年份:2005
- 资助金额:
$ 33.6万 - 项目类别:
Continuing Grant
Abelian Varieties, Asymptotic Invariants in Higher Dimensional Geometry, and Moduli of Vector Bundles
阿贝尔簇、高维几何中的渐近不变量以及向量丛的模
- 批准号:
0601252 - 财政年份:2005
- 资助金额:
$ 33.6万 - 项目类别:
Continuing Grant
ABELIAN VARIETIES, MODULI OF VECTOR BUNDLES AND MODULI OF COURVES
阿贝尔簇、向量丛模和曲线模
- 批准号:
0200150 - 财政年份:2002
- 资助金额:
$ 33.6万 - 项目类别:
Continuing Grant
相似海外基金
I-Corps: Translation Potential of Cellulose-Nanofiber-Based Surface Agents for Enhancing Bioactive Filtration Efficiency
I-Corps:纤维素纳米纤维基表面剂在提高生物活性过滤效率方面的转化潜力
- 批准号:
2401619 - 财政年份:2024
- 资助金额:
$ 33.6万 - 项目类别:
Standard Grant
Unlocking the potential for winemaking applications of membrane filtration
释放膜过滤酿酒应用的潜力
- 批准号:
IM240100133 - 财政年份:2024
- 资助金额:
$ 33.6万 - 项目类别:
Mid-Career Industry Fellowships
Acoustically activated trapping for colloidal filtration: a multiscale experimental investigation using laser-based optical diagnostics
用于胶体过滤的声激活捕获:使用基于激光的光学诊断的多尺度实验研究
- 批准号:
2236466 - 财政年份:2023
- 资助金额:
$ 33.6万 - 项目类别:
Standard Grant
Single glomerular filtration rate and kidney prognosis using unenhanced CT and histopathology in human
使用平扫 CT 和组织病理学研究人类单肾小球滤过率和肾脏预后
- 批准号:
23K15237 - 财政年份:2023
- 资助金额:
$ 33.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Role of myosin 1e in podocyte biology and renal filtration
肌球蛋白 1e 在足细胞生物学和肾滤过中的作用
- 批准号:
10587345 - 财政年份:2023
- 资助金额:
$ 33.6万 - 项目类别:
A Unified Experimental and Modelling Approach to Determine the Infectious Viral Bio-Aerosol Filtration Efficacy of Face Coverings.
确定面罩的传染性病毒生物气溶胶过滤功效的统一实验和建模方法。
- 批准号:
10074419 - 财政年份:2023
- 资助金额:
$ 33.6万 - 项目类别:
Collaborative R&D
Determination of filtration level and porosity in Additive Manufactured porous filters
增材制造多孔过滤器过滤水平和孔隙率的测定
- 批准号:
10060396 - 财政年份:2023
- 资助金额:
$ 33.6万 - 项目类别:
Collaborative R&D
High-efficient and eco-friendly technology for the elimination of permanent organic pollutants in filtration systems
消除过滤系统中永久性有机污染物的高效环保技术
- 批准号:
10072336 - 财政年份:2023
- 资助金额:
$ 33.6万 - 项目类别:
Grant for R&D
Mapping single nephron glomerular filtration rate with mechanisms of autoregulation in the kidney using magnetic resonance imaging
使用磁共振成像绘制单肾单位肾小球滤过率与肾脏自动调节机制
- 批准号:
10732632 - 财政年份:2023
- 资助金额:
$ 33.6万 - 项目类别:
Next generation additive manufacturing solution enabling local, sustainable and low cost production of energy efficient ceramic filtration membranes
下一代增材制造解决方案可实现本地、可持续和低成本生产节能陶瓷过滤膜
- 批准号:
10056737 - 财政年份:2023
- 资助金额:
$ 33.6万 - 项目类别:
Launchpad














{{item.name}}会员




