Hodge Filtration, Singularities, and Complex Birational Geometry
霍奇过滤、奇点和复杂双有理几何
基本信息
- 批准号:2000610
- 负责人:
- 金额:$ 33.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project addresses problems of fundamental interest in pure mathematics, and especially in the field of algebraic geometry. Algebraic geometry is one of the oldest branches of mathematics, as people have attempted for a very long time to use algebra in order to understand problems in geometry, and at the same time one that has seen some of the most outstanding modern developments and connections with areas of pure and applied science. The main aim of the project is to connect parts of algebraic and complex geometry that have previously been quite disjoint; in particular, it uses new tools (called Hodge modules), relying heavily on topology and analysis as well, in order to classify geometric shapes and singularities. This approach is generating numerous projects for Ph.D. students and the project provides research training opportunities for graduate students.In more detail, the PI will continue applying the theory of mixed Hodge modules to concrete problems in complex and birational geometry. He will also continue developing the theory of Hodge ideals, in collaboration with M. Mustata. This has been completed for Q-divisors, providing an extension of the theory of multiplier ideas in this setting, but new ideas need to be brought into play in order to obtain a similar picture for ideal sheaves, or for local cohomology. One hopes that this will lead to further interesting applications. In their work the PI and Mustata have already obtained applications regarding the singularities of theta divisors, hypersurfaces in projective space, or minimal exponents. In addition to further consequences along these lines, they will use the proposed extensions in order to study, for instance, effective bounds for linear series, or roots of the Bernstein-Sato polynomial. The PI has also been involved in applying the theory of Hodge modules towards the study of the variation of families smooth projective varieties of varieties, e.g. Brody hyperbolicity or Viehweg-type questions for parameter spaces. He will extend this study to families of singular varieties, especially those that appear in the theory of moduli of higher dimensional varieties according to Kollár and others, perhaps using those Hodge modules that extend variations of mixed Hodge structure. The PI will also continue working towards the classification of subvarieties with minimal cohomology class on principally polarized abelian varieties, and its link with generic vanishing subschemes and with the singularities of theta divisors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目解决了纯数学兴趣的基本兴趣问题,尤其是在代数几何学领域。代数几何形状是数学最古老的分支之一,因为人们试图使用代数来了解几何学的问题,同时又看到了一些最杰出的现代发展和与纯科学领域的联系。该项目的主要目的是连接代数和复杂几何形状的一部分,这些几何形状以前是不相交的。特别是,它使用新工具(称为Hodge模块),在很大程度上依赖于拓扑和分析,以对几何形状和奇异性进行分类。这种方法正在为博士生成许多项目。学生和该项目为研究生提供了研究培训机会。更详细的是,PI将继续将混合Hodge模块的理论应用于复杂和哲学的具体问题。他还将与M. Mustata合作发展Hodge思想的理论。这已经为Q划分人完成,在此环境中提供了乘数思想理论的扩展,但是需要发挥新的想法,以便为理想的滑轮或本地共同体学获得类似的图片。希望这将导致进一步的有趣应用程序。在他们的工作中,Pi和Mustata已经获得了有关Theta除数,投射空间中的超曲面或最小指数的唯一申请。除了沿着这些线路的进一步后果外,它们还将使用所提出的扩展来研究线性序列的有效界限,或者是伯恩斯坦 - 西托·多项式的根。 PI还参与了将Hodge模块理论应用于研究家族的平滑射击变化变化的变化,例如Brody双曲度或参数空间的ViewWeg型问题。他将将这项研究扩展到奇异品种的家族,尤其是那些根据Kollár和其他人的模型理论出现的,也许使用了那些扩展混合霍奇结构变化的Hodge模块。 PI还将继续致力于对主要两极分化的Abelian品种的最低限度同胞学班级的分类,并与通用消失的亚种和Theta Divides的奇异性联系起来。该奖项反映了NSF的法规任务,并通过对基金会的知识优点和广泛的criitia进行评估,以评估为您提供了珍贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mihnea Popa其他文献
On the base locus of the generalized theta divisor
- DOI:
10.1016/s0764-4442(00)80051-8 - 发表时间:
1999-09-15 - 期刊:
- 影响因子:
- 作者:
Mihnea Popa - 通讯作者:
Mihnea Popa
Mihnea Popa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mihnea Popa', 18)}}的其他基金
Hodge Filtration, Singularities, and Complex Birational Geometry
霍奇过滤、奇点和复杂双有理几何
- 批准号:
2040378 - 财政年份:2020
- 资助金额:
$ 33.6万 - 项目类别:
Continuing Grant
Hodge Theory and Birational Geometry
霍奇理论和双有理几何
- 批准号:
1700819 - 财政年份:2017
- 资助金额:
$ 33.6万 - 项目类别:
Continuing Grant
Cohomological and singularity invariants via Hodge modules and derived equivalences
通过 Hodge 模和导出等价的上同调和奇点不变量
- 批准号:
1405516 - 财政年份:2014
- 资助金额:
$ 33.6万 - 项目类别:
Continuing Grant
Derived Equivalences, Generic Vanishing, and the Structure of Cohomology
导出等价、泛型消失和上同调的结构
- 批准号:
1101323 - 财政年份:2011
- 资助金额:
$ 33.6万 - 项目类别:
Continuing Grant
General Vanishing and Regularity in Derived Categories, Adjoint Ideals and Extension Theorems
派生范畴、伴随理想和可拓定理中的一般消失性和正则性
- 批准号:
0758253 - 财政年份:2008
- 资助金额:
$ 33.6万 - 项目类别:
Continuing Grant
Abelian Varieties, Asymptotic Invariants in Higher Dimensional Geometry, and Moduli of Vector Bundles
阿贝尔簇、高维几何中的渐近不变量以及向量丛的模
- 批准号:
0500985 - 财政年份:2005
- 资助金额:
$ 33.6万 - 项目类别:
Continuing Grant
Abelian Varieties, Asymptotic Invariants in Higher Dimensional Geometry, and Moduli of Vector Bundles
阿贝尔簇、高维几何中的渐近不变量以及向量丛的模
- 批准号:
0601252 - 财政年份:2005
- 资助金额:
$ 33.6万 - 项目类别:
Continuing Grant
ABELIAN VARIETIES, MODULI OF VECTOR BUNDLES AND MODULI OF COURVES
阿贝尔簇、向量丛模和曲线模
- 批准号:
0200150 - 财政年份:2002
- 资助金额:
$ 33.6万 - 项目类别:
Continuing Grant
相似国自然基金
非对称酞菁铁过滤阳极诱导电子离域强化三价砷电氧化去除机制及调控
- 批准号:52300105
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
聚合物纤维膜的声至内源摩擦自充电效应及对空气过滤性能的影响
- 批准号:52373103
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
聚酰亚胺纤维纸基材料分级结构设计及高温气体过滤机制研究
- 批准号:22378248
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于时间过滤器的不可压缩磁流体动力学方程自适应方法研究
- 批准号:12301503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
滴灌用劣质水泵前微压过滤器物理-生物堵塞特性及诱发机制研究
- 批准号:52369013
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
I-Corps: Translation Potential of Cellulose-Nanofiber-Based Surface Agents for Enhancing Bioactive Filtration Efficiency
I-Corps:纤维素纳米纤维基表面剂在提高生物活性过滤效率方面的转化潜力
- 批准号:
2401619 - 财政年份:2024
- 资助金额:
$ 33.6万 - 项目类别:
Standard Grant
Unlocking the potential for winemaking applications of membrane filtration
释放膜过滤酿酒应用的潜力
- 批准号:
IM240100133 - 财政年份:2024
- 资助金额:
$ 33.6万 - 项目类别:
Mid-Career Industry Fellowships
Acoustically activated trapping for colloidal filtration: a multiscale experimental investigation using laser-based optical diagnostics
用于胶体过滤的声激活捕获:使用基于激光的光学诊断的多尺度实验研究
- 批准号:
2236466 - 财政年份:2023
- 资助金额:
$ 33.6万 - 项目类别:
Standard Grant
Single glomerular filtration rate and kidney prognosis using unenhanced CT and histopathology in human
使用平扫 CT 和组织病理学研究人类单肾小球滤过率和肾脏预后
- 批准号:
23K15237 - 财政年份:2023
- 资助金额:
$ 33.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Novel, Targeted Method for Bacteriophage Purification
噬菌体纯化的新型靶向方法
- 批准号:
10698983 - 财政年份:2023
- 资助金额:
$ 33.6万 - 项目类别: