General Vanishing and Regularity in Derived Categories, Adjoint Ideals and Extension Theorems
派生范畴、伴随理想和可拓定理中的一般消失性和正则性
基本信息
- 批准号:0758253
- 负责人:
- 金额:$ 14.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI will study various topics in Algebraic Geometry, including extension theorems in birational geometry, linear series, regularity conditions in derived categories, and minimal cohomology classes in abelian varieties. In particular, he proposes to further develop extension results for sections of line bundles originating in work of Siu, Takayama and Hacon-McKernan. He also proposes to relate a generic vanishing type filtration on the derived category of a smooth projective variety to the perverse T-structure constructed by Kashiwara, by means of homological and commutative algebra.He will approach the classification of subvarieties of minimal class in abelian varieties via Fourier-Mukai-theoretic methods.Some of the proposed research problems, like the study of minimal classes on abelian varieties and the extension problem for sections of line bundles, are among the most distinguished in their respective directions. They also concern experts in adjacent fields, and will likely lead to interactions with people outside of the PI's area of expertise. They would be of considerable interest as proved statements, as documented for example by recent applications of extension theorems to the minimal model program. Others, like the results on derived categories, form a newly emerging theory still to be fully understood, but which has already led to numerous applications to both modern and classical questions.
PI 将研究代数几何中的各种主题,包括双有理几何中的可拓定理、线性级数、派生范畴中的正则条件以及阿贝尔簇中的最小上同调类。特别是,他建议进一步开发源于 Siu、Takayama 和 Hacon-McKernan 工作的线束部分的扩展结果。他还建议通过同调和交换代数,将光滑射影簇的派生范畴上的一般消失型过滤与 Kashiwara 构建的反常 T 结构联系起来。他将通过傅立叶-向井理论方法来处理阿贝尔簇中最小类的子类的分类。提出的一些研究问题,例如阿贝尔簇上最小类的研究 变体和线束截面的扩展问题,在各自的方向上都是最突出的。 它们还涉及邻近领域的专家,并可能导致与 PI 专业领域之外的人进行互动。作为已证明的陈述,它们将引起相当大的兴趣,例如最近将可拓定理应用于最小模型程序所记录的那样。其他的,比如派生类别的结果,形成了一种仍有待充分理解的新兴理论,但它已经在现代和古典问题上得到了广泛的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mihnea Popa其他文献
On the base locus of the generalized theta divisor
- DOI:
10.1016/s0764-4442(00)80051-8 - 发表时间:
1999-09-15 - 期刊:
- 影响因子:
- 作者:
Mihnea Popa - 通讯作者:
Mihnea Popa
Mihnea Popa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mihnea Popa', 18)}}的其他基金
Hodge Filtration, Singularities, and Complex Birational Geometry
霍奇过滤、奇点和复杂双有理几何
- 批准号:
2040378 - 财政年份:2020
- 资助金额:
$ 14.27万 - 项目类别:
Continuing Grant
Hodge Filtration, Singularities, and Complex Birational Geometry
霍奇过滤、奇点和复杂双有理几何
- 批准号:
2000610 - 财政年份:2020
- 资助金额:
$ 14.27万 - 项目类别:
Continuing Grant
Hodge Theory and Birational Geometry
霍奇理论和双有理几何
- 批准号:
1700819 - 财政年份:2017
- 资助金额:
$ 14.27万 - 项目类别:
Continuing Grant
Cohomological and singularity invariants via Hodge modules and derived equivalences
通过 Hodge 模和导出等价的上同调和奇点不变量
- 批准号:
1405516 - 财政年份:2014
- 资助金额:
$ 14.27万 - 项目类别:
Continuing Grant
Derived Equivalences, Generic Vanishing, and the Structure of Cohomology
导出等价、泛型消失和上同调的结构
- 批准号:
1101323 - 财政年份:2011
- 资助金额:
$ 14.27万 - 项目类别:
Continuing Grant
Abelian Varieties, Asymptotic Invariants in Higher Dimensional Geometry, and Moduli of Vector Bundles
阿贝尔簇、高维几何中的渐近不变量以及向量丛的模
- 批准号:
0500985 - 财政年份:2005
- 资助金额:
$ 14.27万 - 项目类别:
Continuing Grant
Abelian Varieties, Asymptotic Invariants in Higher Dimensional Geometry, and Moduli of Vector Bundles
阿贝尔簇、高维几何中的渐近不变量以及向量丛的模
- 批准号:
0601252 - 财政年份:2005
- 资助金额:
$ 14.27万 - 项目类别:
Continuing Grant
ABELIAN VARIETIES, MODULI OF VECTOR BUNDLES AND MODULI OF COURVES
阿贝尔簇、向量丛模和曲线模
- 批准号:
0200150 - 财政年份:2002
- 资助金额:
$ 14.27万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 14.27万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 14.27万 - 项目类别:
Standard Grant
Tracking vanishing foods: a comparative study of the strategy and dynamics of a 'Chinese' diasporic identity in the UK
追踪消失的食物:英国“中国”侨民身份的策略和动态的比较研究
- 批准号:
2863618 - 财政年份:2023
- 资助金额:
$ 14.27万 - 项目类别:
Studentship
Positivity and vanishing theorems of direct image of relative canonical bundle
相关正则丛直像的正定理和消失定理
- 批准号:
23KJ0673 - 财政年份:2023
- 资助金额:
$ 14.27万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Scattering resonances in the vanishing curvature limit
曲率消失极限中的散射共振
- 批准号:
2746963 - 财政年份:2022
- 资助金额:
$ 14.27万 - 项目类别:
Studentship
Non-vanishing of central values of L-functions
L 函数中心值不消失
- 批准号:
561488-2021 - 财政年份:2021
- 资助金额:
$ 14.27万 - 项目类别:
University Undergraduate Student Research Awards
The cinema as "time-capsule": using film to capture vanishing worlds
电影作为“时间胶囊”:用胶片捕捉消失的世界
- 批准号:
AH/W004437/1 - 财政年份:2021
- 资助金额:
$ 14.27万 - 项目类别:
Research Grant
Asymptotic analysis of vanishing diffusion in dynamic boundary conditions
动态边界条件下消失扩散的渐近分析
- 批准号:
21K03309 - 财政年份:2021
- 资助金额:
$ 14.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Vanishing Cycles of Equivariant Perverse Sheaves on Vogan Varieties of Type A
A型Vogan品种等变反常滑轮的消失周期
- 批准号:
544723-2019 - 财政年份:2019
- 资助金额:
$ 14.27万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Canonical Kahler metrics for Fano manifolds with non-vanishing Futaki invariant
具有非消失 Futaki 不变量的 Fano 流形的规范 Kahler 度量
- 批准号:
19J01482 - 财政年份:2019
- 资助金额:
$ 14.27万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




