General Vanishing and Regularity in Derived Categories, Adjoint Ideals and Extension Theorems

派生范畴、伴随理想和可拓定理中的一般消失性和正则性

基本信息

  • 批准号:
    0758253
  • 负责人:
  • 金额:
    $ 14.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

The PI will study various topics in Algebraic Geometry, including extension theorems in birational geometry, linear series, regularity conditions in derived categories, and minimal cohomology classes in abelian varieties. In particular, he proposes to further develop extension results for sections of line bundles originating in work of Siu, Takayama and Hacon-McKernan. He also proposes to relate a generic vanishing type filtration on the derived category of a smooth projective variety to the perverse T-structure constructed by Kashiwara, by means of homological and commutative algebra.He will approach the classification of subvarieties of minimal class in abelian varieties via Fourier-Mukai-theoretic methods.Some of the proposed research problems, like the study of minimal classes on abelian varieties and the extension problem for sections of line bundles, are among the most distinguished in their respective directions. They also concern experts in adjacent fields, and will likely lead to interactions with people outside of the PI's area of expertise. They would be of considerable interest as proved statements, as documented for example by recent applications of extension theorems to the minimal model program. Others, like the results on derived categories, form a newly emerging theory still to be fully understood, but which has already led to numerous applications to both modern and classical questions.
PI将研究代数几何中的各种主题,包括双有理几何中的扩展定理,线性级数,导出类别中的正则性条件以及交换簇中的最小上同调类。特别是,他建议进一步发展延伸成果的部分线束起源于工作的萧,高山和Hacon-McKernan。他还建议通过同调和交换代数将光滑投射簇的导出范畴上的一般消失型过滤与Kashiwara构造的反常T-结构联系起来。他将通过Fourier-Mukai-theory方法探讨交换簇中最小类的子簇的分类。提出的一些研究问题,如阿贝尔簇上的极小类的研究和线丛截面的扩张问题,在它们各自的方向上都是最杰出的。 它们还涉及邻近领域的专家,并可能导致与PI专业领域以外的人进行互动。他们将是相当大的兴趣,证明声明,作为记录,例如最近的应用程序的扩展定理的最小模型程序。其他的结果,如关于派生范畴的结果,形成了一个新出现的理论,仍然有待于充分理解,但它已经导致了对现代和古典问题的大量应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mihnea Popa其他文献

On the base locus of the generalized theta divisor
  • DOI:
    10.1016/s0764-4442(00)80051-8
  • 发表时间:
    1999-09-15
  • 期刊:
  • 影响因子:
  • 作者:
    Mihnea Popa
  • 通讯作者:
    Mihnea Popa

Mihnea Popa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mihnea Popa', 18)}}的其他基金

Hodge Filtration, Singularities, and Complex Birational Geometry
霍奇过滤、奇点和复杂双有理几何
  • 批准号:
    2040378
  • 财政年份:
    2020
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Continuing Grant
Hodge Filtration, Singularities, and Complex Birational Geometry
霍奇过滤、奇点和复杂双有理几何
  • 批准号:
    2000610
  • 财政年份:
    2020
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Continuing Grant
Hodge Theory and Birational Geometry
霍奇理论和双有理几何
  • 批准号:
    1700819
  • 财政年份:
    2017
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Continuing Grant
Cohomological and singularity invariants via Hodge modules and derived equivalences
通过 Hodge 模和导出等价的上同调和奇点不变量
  • 批准号:
    1405516
  • 财政年份:
    2014
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Continuing Grant
Derived Equivalences, Generic Vanishing, and the Structure of Cohomology
导出等价、泛型消失和上同调的结构
  • 批准号:
    1101323
  • 财政年份:
    2011
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Continuing Grant
Abelian Varieties, Asymptotic Invariants in Higher Dimensional Geometry, and Moduli of Vector Bundles
阿贝尔簇、高维几何中的渐近不变量以及向量丛的模
  • 批准号:
    0500985
  • 财政年份:
    2005
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Continuing Grant
Abelian Varieties, Asymptotic Invariants in Higher Dimensional Geometry, and Moduli of Vector Bundles
阿贝尔簇、高维几何中的渐近不变量以及向量丛的模
  • 批准号:
    0601252
  • 财政年份:
    2005
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Continuing Grant
ABELIAN VARIETIES, MODULI OF VECTOR BUNDLES AND MODULI OF COURVES
阿贝尔簇、向量丛模和曲线模
  • 批准号:
    0200150
  • 财政年份:
    2002
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Standard Grant
Tracking vanishing foods: a comparative study of the strategy and dynamics of a 'Chinese' diasporic identity in the UK
追踪消失的食物:英国“中国”侨民身份的策略和动态的比较研究
  • 批准号:
    2863618
  • 财政年份:
    2023
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Studentship
Positivity and vanishing theorems of direct image of relative canonical bundle
相关正则丛直像的正定理和消失定理
  • 批准号:
    23KJ0673
  • 财政年份:
    2023
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Scattering resonances in the vanishing curvature limit
曲率消失极限中的散射共振
  • 批准号:
    2746963
  • 财政年份:
    2022
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Studentship
Non-vanishing of central values of L-functions
L 函数中心值不消失
  • 批准号:
    561488-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 14.27万
  • 项目类别:
    University Undergraduate Student Research Awards
The cinema as "time-capsule": using film to capture vanishing worlds
电影作为“时间胶囊”:用胶片捕捉消失的世界
  • 批准号:
    AH/W004437/1
  • 财政年份:
    2021
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Research Grant
Asymptotic analysis of vanishing diffusion in dynamic boundary conditions
动态边界条件下消失扩散的渐近分析
  • 批准号:
    21K03309
  • 财政年份:
    2021
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Vanishing Cycles of Equivariant Perverse Sheaves on Vogan Varieties of Type A
A型Vogan品种等变反常滑轮的消失周期
  • 批准号:
    544723-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Canonical Kahler metrics for Fano manifolds with non-vanishing Futaki invariant
具有非消失 Futaki 不变量的 Fano 流形的规范 Kahler 度量
  • 批准号:
    19J01482
  • 财政年份:
    2019
  • 资助金额:
    $ 14.27万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了