CSEDI Collaborative Research: Understanding what we see in the lower mantle - mineral physics interpretation of seismic tomographic images

CSEDI 合作研究:了解我们在下地幔中看到的东西 - 地震层析成像的矿物物理解释

基本信息

  • 批准号:
    2000850
  • 负责人:
  • 金额:
    $ 74.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Earth’s mantle thermal convection drives plate tectonics. It is at the origin of numerous risks for populations (e.g., earthquakes, volcanic eruptions, tsunamis). This process extracts Earth’s internal heat, notably produced by the crystallization of its core. The core is ~3,500 km (~2,200 mi) in radius and consists mostly of iron with some nickel. Its liquid outer shell, the outer core, generates the Earth’s magnetic field. Above the core lies the rocky mantle, a hot layer of mostly solid silicates wrapped into the planet’s crust. The core-mantle boundary (CMB) is located ~2,900 km (1800 mi) beneath the Earth’s surface. It is a complex and critical boundary. There, heat transfer, from the core to the mantle, constrains the geodynamo and powers mantle convection. Deep patterns of mantle flow are observed by refined seismic imaging above the CMB. These structures still challenge interpretations in terms of mineralogy and thermodynamical state. Here, researchers focus on the mantle system. The multidisciplinary team of computational scientists consists of a mineral physicist, two seismologists, an applied mathematician, and a geodynamicist. It introduces innovative approaches to analyze the origin of mantle structures, including machine learning algorithm. The models are constrained with the latest mineral physics data, obtained at the extreme pressures and temperatures prevailing in Earth’s interior. Gradually, the scientists unveil the origins, compositions, and temperatures of the deep mantle structures. Outcomes of the project, i.e., state-of-the-art methods, software, and databases, will benefit the Earth Science community. The project also provides support for an early career female scientist, and training for four graduate students at Columbia University and Princeton University.Here, the researchers use the latest shear (S-) and compressional (P-) wave models obtained by global adjoint tomography, without reference to a 1D spherical model or assumptions of correlations between compressional (VP) and shear velocity (VS) heterogeneities. They also use direct inversion, machine learning algorithms, and the latest mineral physics results on thermoelastic properties of mineral phases undergoing iron spin crossover (ISC). They pay particular attention to the effect of the ISC which disrupts the usual correlation between VS and VP heterogeneities caused by lateral temperature or composition variations. They focus on lower mantle structures, mainly plumes rooted at the CMB and possibly slabs in this region. In the process, they are formatting the mineral physics data on ISCs to make it available through two popular thermochemical and thermoelasticity software/database frameworks – BurnMan and Perple_X – that couple with geodynamic codes. With this software/data infrastructure in place, they run geodynamic simulations to understand the effect of ISC on mantle dynamics. Conversely, results of geodynamic modeling coupled to thermoelasticity data are used to synthesize tomographic images to be compared with observed mantle structures. The know-how generated by this project, i.e., methods, software, databases, and results will be made available through peer-reviewed journals and in specialized web sites, e.g., BurnMan, Perple_X, IRIS, github.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地幔热对流驱动板块构造。它是人类面临的众多风险(例如,地震、火山爆发、海啸)的根源。这个过程提取了地球内部的热量,特别是由地核结晶产生的热量。地核半径约3500公里(约2200英里),主要由铁和一些镍组成。它的液态外壳,即外核,产生了地球的磁场。地核上方是岩石地幔,这是一层由固态硅酸盐组成的热层,包裹在地球的地壳中。地核-地幔边界(CMB)位于地球表面下约2900公里(1800英里)处。这是一个复杂而关键的边界。在那里,从地核到地幔的热传递限制了地球动力,并为地幔对流提供了动力。通过CMB上方的精细地震成像,可以观察到地幔流动的深层模式。这些结构仍然挑战着矿物学和热力学状态方面的解释。在这里,研究人员专注于地幔系统。这个多学科的计算科学家小组由一名矿物物理学家、两名地震学家、一名应用数学家和一名地球动力学家组成。它引入了创新的方法来分析地幔结构的起源,包括机器学习算法。这些模型受到最新矿物物理数据的限制,这些数据是在地球内部普遍存在的极端压力和温度下获得的。渐渐地,科学家们揭开了深层地幔结构的起源、组成和温度。该项目的成果,即最先进的方法、软件和数据库,将使地球科学界受益。该项目还为一名早期职业女性科学家提供支持,并为哥伦比亚大学和普林斯顿大学的四名研究生提供培训。在这里,研究人员使用了全球伴随断层扫描获得的最新横波(S-)和纵波(P-)模型,而没有参考一维球面模型,也没有考虑纵波(VP)和横波速度(VS)非均质性之间的相关性。他们还使用直接反演、机器学习算法和最新的矿物物理结果来研究铁自旋交叉(ISC)的矿物相的热弹性特性。他们特别关注ISC的影响,它破坏了通常由侧向温度或成分变化引起的VS和VP非均质性之间的相关性。他们关注的是下地幔结构,主要是植根于CMB的柱状结构,也可能是该地区的板块。在此过程中,他们正在格式化ISCs上的矿物物理数据,以便通过两个流行的热化学和热弹性软件/数据库框架(BurnMan和Perple_X)与地球动力学代码耦合使用。有了这些软件/数据基础设施,他们就可以进行地球动力学模拟,以了解ISC对地幔动力学的影响。相反,将地球动力学模拟结果与热弹性数据相结合,合成层析成像图像,与观测到的地幔结构进行比较。该项目产生的专有技术,即方法、软件、数据库和结果将通过同行评审期刊和专业网站(例如BurnMan、Perple_X、IRIS、github)提供。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ab initio lattice thermal conductivity of MgSiO3 across the perovskite-postperovskite phase transition
  • DOI:
    10.1103/physrevb.103.144103
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Zhen Zhang;R. Wentzcovitch
  • 通讯作者:
    Zhen Zhang;R. Wentzcovitch
cij: A Python code for quasiharmonic thermoelasticity
cij:准谐波热弹性的 Python 代码
  • DOI:
    10.1016/j.cpc.2021.108067
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Luo, Chenxing;Deng, Xin;Wang, Wenzhong;Shukla, Gaurav;Wu, Zhongqing;Wentzcovitch, Renata M.
  • 通讯作者:
    Wentzcovitch, Renata M.
Discriminating lower mantle composition
Ab initio anharmonic thermodynamic properties of cubic CaSiO3 perovskite
  • DOI:
    10.1103/physrevb.103.104108
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhen Zhang;R. Wentzcovitch
  • 通讯作者:
    Zhen Zhang;R. Wentzcovitch
Ab initio calculations of third-order elastic coefficients
三阶弹性系数的从头算
  • DOI:
    10.1103/physrevb.106.214104
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Luo, Chenxing;Tromp, Jeroen;Wentzcovitch, Renata M.
  • 通讯作者:
    Wentzcovitch, Renata M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Renata Wentzcovitch其他文献

Elasticity and acoustic velocities of $delta$-AlOOH at extreme conditions: a methodology assessment
极端条件下 $delta$-AlOOH 的弹性和声速:方法评估
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Luo;Yang Sun;Renata Wentzcovitch
  • 通讯作者:
    Renata Wentzcovitch

Renata Wentzcovitch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Renata Wentzcovitch', 18)}}的其他基金

International Workshop on Recent Developments in Electronic Structure
电子结构最新发展国际研讨会
  • 批准号:
    2225459
  • 财政年份:
    2022
  • 资助金额:
    $ 74.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Thermodynamics and thermoelasticity of iron-bearing phases
合作研究:含铁相的热力学和热弹性
  • 批准号:
    1918126
  • 财政年份:
    2019
  • 资助金额:
    $ 74.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSEDI -Understanding Si and Fe differentiation in Earth?s mantle and core through experimental and theoretical research in geochemistry and mineral physics
合作研究:CSEDI - 通过地球化学和矿物物理的实验和理论研究了解地幔和地核中的硅和铁分异
  • 批准号:
    1503084
  • 财政年份:
    2015
  • 资助金额:
    $ 74.5万
  • 项目类别:
    Continuing Grant
Collaborative Project: EaGER - CSEDI: Towards an integrated view of deep mantle structure, temperature, and composition
合作项目:EaGER - CSEDI:对深部地幔结构、温度和成分的综合看法
  • 批准号:
    1341862
  • 财政年份:
    2013
  • 资助金额:
    $ 74.5万
  • 项目类别:
    Standard Grant
Theory of thermoelastic properties of iron bearing minerals
含铁矿物的热弹性理论
  • 批准号:
    1319361
  • 财政年份:
    2013
  • 资助金额:
    $ 74.5万
  • 项目类别:
    Standard Grant
CAREER: Efficient DFT-based computational approach for correlated systems
职业:相关系统的基于 DFT 的高效计算方法
  • 批准号:
    1151738
  • 财政年份:
    2012
  • 资助金额:
    $ 74.5万
  • 项目类别:
    Continuing Grant
Quantum Mechanical Modeling of Major Mantle Materials
主要地幔材料的量子力学模拟
  • 批准号:
    1019853
  • 财政年份:
    2010
  • 资助金额:
    $ 74.5万
  • 项目类别:
    Continuing Grant
MSA Short Course: Theoretical and Computational Methods in Mineral Physics - Geophysical Applications
MSA 短期课程:矿物物理理论和计算方法 - 地球物理应用
  • 批准号:
    0952600
  • 财政年份:
    2009
  • 资助金额:
    $ 74.5万
  • 项目类别:
    Standard Grant
CSEDI: Integrated Study of Water (H2O) in the Mantle: Processes and Signature
CSEDI:地幔中水 (H2O) 的综合研究:过程和特征
  • 批准号:
    0757903
  • 财政年份:
    2008
  • 资助金额:
    $ 74.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Quantum Mechanical Modeling of Major Mantle Materials
合作研究:主要地幔材料的量子力学模拟
  • 批准号:
    0635990
  • 财政年份:
    2007
  • 资助金额:
    $ 74.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2154072
  • 财政年份:
    2022
  • 资助金额:
    $ 74.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2153688
  • 财政年份:
    2022
  • 资助金额:
    $ 74.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2153910
  • 财政年份:
    2022
  • 资助金额:
    $ 74.5万
  • 项目类别:
    Continuing Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
  • 批准号:
    2054884
  • 财政年份:
    2021
  • 资助金额:
    $ 74.5万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The Origins and Implications of Inner Core Seismic Anisotropy
CSEDI合作研究:内核地震各向异性的起源和意义
  • 批准号:
    2054964
  • 财政年份:
    2021
  • 资助金额:
    $ 74.5万
  • 项目类别:
    Continuing Grant
CSEDI Collaborative Research: Understanding of the effects of large planetesimal collisions on Hadean Earth mantle dynamics
CSEDI合作研究:了解大型星子碰撞对冥古宙地幔动力学的影响
  • 批准号:
    2102571
  • 财政年份:
    2021
  • 资助金额:
    $ 74.5万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: Understanding of the effects of large planetesimal collisions on Hadean Earth mantle dynamics
CSEDI合作研究:了解大型星子碰撞对冥古宙地幔动力学的影响
  • 批准号:
    2102777
  • 财政年份:
    2021
  • 资助金额:
    $ 74.5万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
  • 批准号:
    2054912
  • 财政年份:
    2021
  • 资助金额:
    $ 74.5万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
  • 批准号:
    2054876
  • 财政年份:
    2021
  • 资助金额:
    $ 74.5万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The Origins and Implications of Inner Core Seismic Anisotropy
CSEDI合作研究:内核地震各向异性的起源和意义
  • 批准号:
    2054993
  • 财政年份:
    2021
  • 资助金额:
    $ 74.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了