Modularity of Genus Two Curves

亏格两条曲线的模性

基本信息

  • 批准号:
    2001097
  • 负责人:
  • 金额:
    $ 65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

One of the motivating problems of number theory is to understand all the solutions in integers to polynomial equations. One famous example is due to Fermat, who conjectured that there were no triples of positive integers X,Y, and Z such that X^N + Y^N = Z^N whenever N greater than 2. The eventual solution of this problem (by Andrew Wiles in 1994) exploited a class of functions known as automorphic forms. When one tries to understand the vibration of a simple string, Fourier (some 200 years ago) had the insight to decompose any such vibration into pure waves. Automorphic forms are the analogs of these pure waves except now instead of working in one dimension (a string) one considers a particular incredibly symmetric configuration in higher dimensions. The most general link between systems of polynomial equations and automorphic “waves" remains highly conjectural, and was only formulated by Robert Langlands in the 1960s. The Langlands conjectures have since found to have far reaching implications beyond the original arithmetic problems of counting integral solutions. In the case of polynomials in two variables, there is a numerical invariant (the genus) which measures their complexity. The simplest instance of the Langlands correspondence (when the genus is zero) was proved by Riemann in the 1850s, and the next case (when the genus is one) was not resolved for another 150 years in the work Wiles and others. The goal of the current project is to resolve the case when the genus is two. The award will support research training of graduate students.The main goal of this project is to established the modularity of genus two curves over the rational numbers. The main approach is to strengthen recent work of Boxer-Calegari-Gee-Pilloni who prove that genus two curves over the rational numbers are potentially modular. We expect that the technical results required to upgrade this theorem should also have many other applications in the Langlands program which we intend to pursue.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数论的一个激励问题是理解多项式方程的整数解。一个著名的例子是费马,他证明了不存在正整数X、Y和Z的三元组,使得当N大于2时,X^N + Y^N = Z^N。这个问题的最终解决方案(由Andrew Wiles在1994年提出)利用了一类称为自守形式的函数。当人们试图理解一个简单的弦的振动时,傅立叶(大约200年前)有洞察力将任何这样的振动分解为纯波。自守形式是这些纯波的类似物,除了现在不是在一维(弦)中工作,而是在更高维度中考虑一种特殊的令人难以置信的对称配置。多项式方程组和自守“波”之间最普遍的联系仍然是高度抽象的,只有罗伯特·朗兰兹在20世纪60年代才提出。朗兰兹定理已经发现有深远的影响超出了原来的算术问题计数积分解决方案。在二元多项式的情况下,有一个数值不变量(亏格)来衡量它们的复杂性。朗兰兹对应的最简单例子(亏格为0时)在19世纪50年代由黎曼证明,而下一个例子(亏格为1时)在怀尔斯等人的著作中又过了150年才得到解决。当前项目的目标是解决亏格为2的情况。该项目的主要目标是建立有理数上亏格两曲线的模性。主要的方法是加强Boxer-Calegari-Gee-Pilloni最近的工作,证明了有理数上的亏格两条曲线是潜在的模。我们希望,技术成果所需的升级这一定理也应该有许多其他的应用程序中朗兰兹计划,我们打算pursued.This奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rationality of twists of the Siegel modular variety of genus 2 and level 3
属 2 和级 3 的 Siegel 模变的扭曲合理性
Bloch groups, algebraic $K$-theory, units, and Nahm's Conjecture
布洛赫群、代数 $K$ 理论、单位和纳姆猜想
Potential automorphy over CM fields
CM 场上的潜在自同构
  • DOI:
    10.4007/annals.2023.197.3.2
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Allen, Patrick;Calegari, Frank;Caraiani, Ana;Gee, Toby;Helm, David;Le Hung, Bao;Newton, James;Scholze, Peter;Taylor, Richard;Thorne, Jack
  • 通讯作者:
    Thorne, Jack
Abelian surfaces over totally real fields are potentially modular
完全真实域上的阿贝尔曲面可能是模块化的
  • DOI:
    10.1007/s10240-021-00128-2
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Boxer, George;Calegari, Frank;Gee, Toby;Pilloni, Vincent
  • 通讯作者:
    Pilloni, Vincent
Minimal modularity lifting for nonregular symplectic representations
非正则辛表示的最小模块化提升
  • DOI:
    10.1215/00127094-2019-0044
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Calegari, Frank;Geraghty, David
  • 通讯作者:
    Geraghty, David
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francesco Calegari其他文献

Francesco Calegari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francesco Calegari', 18)}}的其他基金

New Approaches To Modularity
模块化的新方法
  • 批准号:
    1701703
  • 财政年份:
    2017
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
New Directions in Modularity
模块化的新方向
  • 批准号:
    1648702
  • 财政年份:
    2015
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
New Directions in Modularity
模块化的新方向
  • 批准号:
    1404620
  • 财政年份:
    2014
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Automorphy lifting theorems and generalizations of Serre's conjecture
自同构提升定理和塞尔猜想的推广
  • 批准号:
    1101483
  • 财政年份:
    2011
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
CAREER: Arithmetic of Cohomological Automorphic Forms
职业:上同调自同构形式的算术
  • 批准号:
    0846285
  • 财政年份:
    2009
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Serre-type conjectures and mod p Langlands correspondences
Serre 型猜想和 mod p Langlands 对应
  • 批准号:
    0902044
  • 财政年份:
    2009
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Families of p-adic modular forms
p-进模形式族
  • 批准号:
    0701048
  • 财政年份:
    2007
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant

相似国自然基金

三种冠长臂猿(genus Nomascus)鸣声节奏及其功能研究
  • 批准号:
    32300393
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323415
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
  • 批准号:
    2426560
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
How the mushroom lost its gills: phylogenomics and population genetics of a morphological innovation in the fungal genus Lentinus
蘑菇如何失去鳃:香菇属真菌形态创新的系统基因组学和群体遗传学
  • 批准号:
    2333266
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323414
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Mining the chemodiversity of the genus Myrica to reveal bioactive molecules for their medicinal uses
挖掘杨梅属的化学多样性,揭示其药用生物活性分子
  • 批准号:
    2880591
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Studentship
Distribution of type three secretion system genes and their association with the diarrheagenicity of genus Providencia
普罗威登斯菌三型分泌系统基因分布及其与致泻性的关系
  • 批准号:
    23KF0152
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
BRC-BIO: Understanding the Role of Species Interactions in Evolutionary Radiations Through the Evolution of Non-flying Mammal Pollination in the Iconic Plant Genus Protea
BRC-BIO:通过标志性植物普罗蒂亚属非飞行哺乳动物授粉的进化来了解物种相互作用在进化辐射中的作用
  • 批准号:
    2233118
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Functional analysis of luciferase and proteins involved in the storage of luciferin from lantern shark; genus Etmopterus
灯笼鲨荧光素酶和参与储存荧光素的蛋白质的功能分析;
  • 批准号:
    23KJ2063
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Is Lactobacillus really our friend? -Identification of invasion suppressive Lactobacillus genus in placentation
乳酸菌真的是我们的朋友吗?
  • 批准号:
    23K15843
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Landscape genomics of co-evolution: a test in carpenter ants (Genus Camponotus) and their microbial symbionts
职业:共同进化的景观基因组学:木蚁(弓背蚁属)及其微生物共生体的测试
  • 批准号:
    2238571
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了