New Directions in Modularity

模块化的新方向

基本信息

  • 批准号:
    1404620
  • 负责人:
  • 金额:
    $ 30.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-10-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

The problem of understanding prime numbers goes back to antiquity. One natural problem which arose in the 19th century was to count the number of primes less than X for some variable quantity X. The resolution came in an unexpected way : this *discrete* counting problem turned out to be related to the properties of a *continuous* function first studied by Euler but now known as the Riemann zeta function. The breakthrough hinged on a crucial property of this function discovered by Riemann, namely, that it had a hidden symmetry which related the value of the function evaluated at the point "s" to the value evaluated at the point "1-s". This hidden symmetry turns out to be merely the tip of the iceberg; there are a wide class of similar functions which exhibit similar symmetries (at least conjecturally), and these functions arise in many areas of mathematics and physics. By proving that a certain class of such functions had this symmetry, Andrew Wiles in 1994 was able to prove Fermat's Last Theorem. The PI's work aims to prove that a certain class of functions exhibit the same symmetry as the Riemann zeta function. More specifically, there are a natural collections of such functions indexed by a natural number g. When g is zero, there is a single function which was the one considered by Euler and Riemann. When g is one, the class of functions are exactly the ones studied by Wiles. The PI plans to study the functions arising when g is two. An overarching theme of the PI's research (including collaborations with Emerton, Geraghty, and Venkatesh) has been the study of torsion classes in cohomology, both in the Betti cohomology of arithmetic groups and the coherent cohomology of Shimura varieties, and their conjectural relationship with the Langlands program. The PI's work suggests that understanding torsion is at the heart of understanding reciprocity beyond Shimura varieties. One of the main long term technical goals of the proposed project is to prove that L-functions attached to genus two curves satisfy the expected functional equations. For curves of genus one, this is the famous Taniyama-Shimura conjecture, now a theorem, which was first proved in many cases by Wiles. For curves of genus zero, this is a famous theorem of Riemann, namely, the functional equation of the Riemann zeta function. In order to approach this problem, the PI has (with David Geraghty) developed a generalization of the Taylor-Wiles method which may conceivably apply in this case. Much of his effort will be devoted to trying to overcome the numerous technical obstacles which are required to carry out this argument, including local-global compatibility for Galois representations, and vanishing of cohomology groups outside certain ranges. More generally, the PI intends to further develop this general approach to modularity questions in other contexts, including Galois representations conjecturally associated to automorphic forms for GL(n) over the rationals. He also plans to study applications of these results to the Bloch-Kato conjecture and establishing links between K-theory, completed cohomology, and the Langlands program.
理解质数的问题可以追溯到古代。19世纪出现的一个自然问题是计算某个变量X的小于X的素数的数量。解决方法出人意料:这个离散计数问题原来与一个连续函数的性质有关,这个连续函数最初是由欧拉研究的,现在被称为黎曼ζ函数。这个突破取决于黎曼发现的这个函数的一个关键性质,即它有一个隐藏的对称性,它将函数在s点的值与1-s点的值联系起来。这种隐藏的对称性只是冰山一角;有一大类相似的函数表现出相似的对称性(至少在推测上),这些函数出现在数学和物理的许多领域。通过证明一类这样的函数具有这种对称性,安德鲁·怀尔斯在1994年证明了费马大定理。PI的工作旨在证明某类函数表现出与黎曼ζ函数相同的对称性。更具体地说,存在一个以自然数g为索引的函数的自然集合。当g为零时,存在一个由欧拉和黎曼考虑的函数。当g = 1时,这类函数就是Wiles研究过的。PI计划研究g = 2时的函数。PI的研究(包括与Emerton, Geraghty和Venkatesh的合作)的一个总体主题是对上同调中的扭转类的研究,包括在算法群的Betti上同调和Shimura变种的相干上同调中,以及它们与Langlands程序的推测关系。PI的工作表明,理解扭转是理解超越志村变异的互惠的核心。提出的项目的主要长期技术目标之一是证明附属于属二曲线的l函数满足预期的函数方程。对于属1的曲线,这是著名的谷山-志村猜想,现在是一个定理,它在很多情况下是由怀尔斯首先证明的。对于属零的曲线,这是著名的黎曼定理,即黎曼ζ函数的泛函方程。为了解决这个问题,PI(与David Geraghty)开发了一种泰勒-怀尔斯方法的推广方法,可以想见,这种方法可能适用于这种情况。他的大部分努力将致力于克服实现这一论证所需的众多技术障碍,包括伽罗瓦表示的局部-全局兼容性,以及在一定范围外上同群的消失。更一般地说,PI打算在其他情况下进一步发展这种通用方法来解决模块化问题,包括与理性上的GL(n)的自同构形式推测相关的伽罗瓦表示。他还计划研究这些结果在布洛赫-加藤猜想中的应用,并建立k理论、完全上同论和朗兰兹计划之间的联系。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Stable Homology of Congruence Subgroups
  • DOI:
    10.2140/gt.2015.19.3149
  • 发表时间:
    2013-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Frank Calegari
  • 通讯作者:
    Frank Calegari
Non-minimal modularity lifting in weight one
非最小模块化举重一
Homological stability for completed homology
完全同源性的同源稳定性
  • DOI:
    10.1007/s00208-015-1235-7
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Calegari, Frank;Emerton, Matthew
  • 通讯作者:
    Emerton, Matthew
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francesco Calegari其他文献

Francesco Calegari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francesco Calegari', 18)}}的其他基金

Modularity of Genus Two Curves
亏格两条曲线的模性
  • 批准号:
    2001097
  • 财政年份:
    2020
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Continuing Grant
New Approaches To Modularity
模块化的新方法
  • 批准号:
    1701703
  • 财政年份:
    2017
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Continuing Grant
New Directions in Modularity
模块化的新方向
  • 批准号:
    1648702
  • 财政年份:
    2015
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Continuing Grant
Automorphy lifting theorems and generalizations of Serre's conjecture
自同构提升定理和塞尔猜想的推广
  • 批准号:
    1101483
  • 财政年份:
    2011
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
CAREER: Arithmetic of Cohomological Automorphic Forms
职业:上同调自同构形式的算术
  • 批准号:
    0846285
  • 财政年份:
    2009
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Continuing Grant
Serre-type conjectures and mod p Langlands correspondences
Serre 型猜想和 mod p Langlands 对应
  • 批准号:
    0902044
  • 财政年份:
    2009
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Families of p-adic modular forms
p-进模形式族
  • 批准号:
    0701048
  • 财政年份:
    2007
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant

相似海外基金

New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
  • 批准号:
    EP/Z000688/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Research Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342245
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Manchester Metropolitan University and Future Directions CIC KTP 23_24 R3
曼彻斯特城市大学和未来方向 CIC KTP 23_24 R3
  • 批准号:
    10083223
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Knowledge Transfer Network
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306379
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Conference: Future Directions for Mathematics Education Research, Policy, and Practice
会议:数学教育研究、政策和实践的未来方向
  • 批准号:
    2342550
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
  • 批准号:
    2339274
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Continuing Grant
Participant Support for Biomechanists Outlining New Directions Workshop (USA and Italy: BOND); Naples, Italy; 24-27 September 2023
生物力学专家概述新方向研讨会的参与者支持(美国和意大利:BOND);
  • 批准号:
    2314385
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
  • 批准号:
    2327010
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了