W-Algebras and Universal Objects in Vertex Algebra Theory

顶点代数理论中的 W 代数和通用对象

基本信息

  • 批准号:
    2001484
  • 负责人:
  • 金额:
    $ 16.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Many structures and concepts that were inspired by physics have had a profound influence on mathematics during the last half century. For example, stringy invariants of manifolds such as quantum cohomology have led to spectacular advances in enumerative geometry. On the algebraic side, a fundamental new structure called a vertex operator algebra (VOA) emerged from quantum field theory in the 1980s, and was axiomatized by Borcherds in his work on the Moonshine Conjecture. VOAs are natural generalizations of commutative rings, and in the last thirty years, they have found applications in a diverse range of subjects including finite group theory, representation theory, combinatorics, number theory, and algebraic geometry. In this project, the PI will investigate the structure and representation theory of VOAs, as well as some connections between VOAs and algebraic geometry. These projects will advance the subject and provide educational and collaborative opportunities for the PI's current and former graduate students.First, the PI's work on the coset realization of principal W-algebras of A, D, and E types resolved a 30-year-old conjecture which had been a key starting assumption in physics. It has many striking corollaries such as the unitarity of all discrete series representations of principal W-algebras, and the existence of modular tensor categories of modules for affine VOAs at admissible levels. The PI will construct coset realizations of principal W-algebras of other Lie types, as well as non-principal W-algebras and W-superalgebras. Second, the PI recently constructed a universal two-parameter VOA which interpolates between all the type A principal W-algebras, in the sense that they arise as one-parameter quotients of this structure. The PI will construct more general universal objects, which are VOAs defined over the ring of functions on some variety X. Typically, interesting VOAs are obtained by specializing the universal object along certain subvarieties of X, and unexpected isomorphisms of these VOAs correspond to intersection points on these subvarieties. Third, the PI will study two affine schemes that have been attached to a VOA by Arakawa: the associated scheme and the singular support. There is always a closed embedding of the singular support in the arc space of the associated scheme. The PI will investigate good criteria for this embedding to be an isomorphism. This has many applications in VOA theory and is connected to questions about the geometry of arc spaces that are of independent interest.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的半个世纪里,许多受物理学启发的结构和概念对数学产生了深远的影响。例如,流形的弦不变量,如量子上同调,导致了计数几何的惊人进步。在代数方面,20世纪80年代从量子场论中出现了一种称为顶点算子代数(VOA)的基本新结构,并由Borcherds在他关于月光猜想的工作中公理化。voa是交换环的自然推广,在过去的三十年中,它们已经在各种学科中得到了应用,包括有限群论、表示论、组合学、数论和代数几何。在这个项目中,PI将研究VOAs的结构和表示理论,以及VOAs与代数几何之间的一些联系。这些项目将推进这一主题,并为PI的现任和前任研究生提供教育和合作的机会。首先,PI在A、D和E型主w代数的协集实现上的工作解决了一个30年的猜想,这个猜想是物理学中一个关键的开始假设。它有许多惊人的推论,如主w代数的所有离散级数表示的统一性,以及在可容许水平上仿射VOAs的模张量范畴的存在性。PI将构造其他Lie类型的主w代数的协集实现,以及非主w代数和w超代数。其次,PI最近构造了一个通用的双参数VOA,它在所有a型主w代数之间插入,因为它们是这个结构的单参数商。PI将构造更一般的泛对象,这些泛对象是定义在某些变种X上的函数环上的voa。通常,通过沿着X的某些子变种专门化泛对象来获得有趣的voa,并且这些voa的意外同构对应于这些子变种上的交点。第三,PI将研究Arakawa附加在VOA上的两个仿射方案:关联方案和奇异支持。在关联方案的弧空间中,奇异支撑总是有一个闭合的嵌入。PI将研究这种嵌入是同构的良好标准。这在VOA理论中有许多应用,并且与弧空间的几何问题有关,这是独立的兴趣。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cosets of Free Field Algebras via Arc Spaces
通过弧空间的自由场代数陪集
INVARIANT SUBALGEBRAS OF THE SMALL 𝒩 = 4 SUPERCONFORMAL ALGEBRA
  • DOI:
    10.1007/s00031-021-09652-1
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    T. Creutzig;A. Linshaw;W. Riedler
  • 通讯作者:
    T. Creutzig;A. Linshaw;W. Riedler
The Global Sections of Chiral de Rham Complexes on Compact Ricci-flat Kähler Manifolds II
紧凑 Ricci 平坦 Kähler 流形 II 上手性 de Rham 配合物的全局截面
Trialities of $\mathcal{W}$-algebras
  • DOI:
    10.4310/cjm.2022.v10.n1.a2
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    T. Creutzig;A. Linshaw
  • 通讯作者:
    T. Creutzig;A. Linshaw
T-Duality and the Exotic Chiral de Rham Complex
T-二元性和异国情调的手性德拉姆复合体
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Linshaw其他文献

Andrew Linshaw的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Linshaw', 18)}}的其他基金

Representation Theory, Calabi-Yau Manifolds, and Mirror Symmetry
表示论、卡拉比-丘流形和镜像对称
  • 批准号:
    2227199
  • 财政年份:
    2022
  • 资助金额:
    $ 16.58万
  • 项目类别:
    Standard Grant

相似海外基金

Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
  • 批准号:
    2903298
  • 财政年份:
    2027
  • 资助金额:
    $ 16.58万
  • 项目类别:
    Studentship
CageTag: Caged Theranostics as a Universal Platform for Nuclear Medicine
CageTag:笼式治疗诊断学作为核医学的通用平台
  • 批准号:
    EP/V055836/2
  • 财政年份:
    2024
  • 资助金额:
    $ 16.58万
  • 项目类别:
    Research Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
  • 批准号:
    2340089
  • 财政年份:
    2024
  • 资助金额:
    $ 16.58万
  • 项目类别:
    Standard Grant
NGO-Prosecutorial Complex in Universal Jurisdiction Cases: Structure and Consequences for Justice and Public Knowledge about Human Rights Violations
普遍管辖权案件中的非政府组织-检察复合体:正义的结构和后果以及公众对侵犯人权行为的了解
  • 批准号:
    2314061
  • 财政年份:
    2024
  • 资助金额:
    $ 16.58万
  • 项目类别:
    Standard Grant
Universal approaches in random matrix theory
随机矩阵理论中的通用方法
  • 批准号:
    24K06766
  • 财政年份:
    2024
  • 资助金额:
    $ 16.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Universal Crystal Growth Capsule and Novel Wafer Dicing Tool for In-Space Manufacturing
SBIR 第一阶段:用于太空制造的通用晶体生长舱和新型晶圆切割工具
  • 批准号:
    2419346
  • 财政年份:
    2024
  • 资助金额:
    $ 16.58万
  • 项目类别:
    Standard Grant
Universal Model Selection Criteria for Scientific Machine Learning
科学机器学习的通用模型选择标准
  • 批准号:
    DE240100144
  • 财政年份:
    2024
  • 资助金额:
    $ 16.58万
  • 项目类别:
    Discovery Early Career Researcher Award
Universal Legal Identity and the Sustainable Development Goals
普遍法律身份和可持续发展目标
  • 批准号:
    DE240100636
  • 财政年份:
    2024
  • 资助金额:
    $ 16.58万
  • 项目类别:
    Discovery Early Career Researcher Award
Integrating universal and tailored approaches across the continuum of mental health and substance use supports: Supporting the implementation and coordination of the Icelandic Prevention Model and Integrated Youth Services
在心理健康和药物滥用支持的连续过程中整合通用和量身定制的方法:支持冰岛预防模式和综合青年服务的实施和协调
  • 批准号:
    477940
  • 财政年份:
    2024
  • 资助金额:
    $ 16.58万
  • 项目类别:
    Salary Programs
Rubber DUQ: Flexible Dynamic Universal Quantum programming
Rubber DUQ:灵活动态通用量子编程
  • 批准号:
    EP/X025551/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.58万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了