NSF-BSF Research in Representation Theory with Applications to Number Theory and Physics
NSF-BSF 表示论及其在数论和物理学中的应用研究
基本信息
- 批准号:2001537
- 负责人:
- 金额:$ 13.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Representation theory is the study of linear symmetries. Since there are many symmetries in nature, and since linear methods are powerful and efficient, this subject has found numerous applications in mathematics, physics, chemistry, and computer science. Classically, representations of finite or compact groups were studied. The current project concerns representations of infinite, non-compact, algebraic groups, and the PI and his collaborator will study more recent mathematical structures such as Lie supergroups, quantum groups, and double affine Hecke algebras. Each of these topics has been an active area of modern mathematical research for many years, yet many important questions remain open. The resolution of the questions answered in this project will lead to significant new applications in number theory, combinatorics, and physics.The main part of the project is dedicated to the study of automorphic representations and will be pursued by the PI and an Israeli collaborator D. Gourevitch. This is a subject of central importance in the Langlands program in number theory, and recently of much interest in string theory. The PI and Gourevitch will employ the method of Whittaker functionals, which are a traditional tool for studying large automorphic representations. However the PI and collaborators have recently introduced a more refined class of functionals, which are well-adapted to studying small representations. This will have applications to quantum gravity, where small automorphic representations arise as certain quantum corrections to Einstein's theory of general relativity. The second part of the project will study higher dimensional analogs of Dirichlet series, which generalize the celebrated Riemann zeta function. The PI will study these series using double affine Hecke algebra, which are a traditional tool for understanding the symmetries of Macdonald polynomials -- themselves a central object of study in algebraic combinatorics. The PI and collaborators have recently discovered a new class of representations of these algebras, called metaplectic representations, that hold considerable promise for studying multiple Dirichlet series. The third part of the project will develop the theory of Capelli differential operators. These operators have their origin in classical invariant theory, which comprised a large part of 19th century mathematics. They also played a key role in Atiyah-Bott-Patodi approach to the index theorem, which is a highlight of 20th century mathematics. The PI and collaborators will extend Capelli operators to the modern realms of Lie superalgebras and quantum groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
表示论是研究线性对称性的。由于自然界中有许多对称性,并且线性方法是强大而有效的,因此这个主题在数学,物理,化学和计算机科学中有许多应用。经典上,研究了有限群或紧群的表示。目前的项目涉及无限,非紧,代数群的表示,PI和他的合作者将研究更近期的数学结构,如李群,量子群和双仿射Hecke代数。这些主题中的每一个都是现代数学研究多年来的活跃领域,但许多重要的问题仍然是开放的。该项目中所回答的问题的解决将导致数论,组合学和物理学的重要新应用。该项目的主要部分致力于研究自守表示,并将由PI和以色列合作者D.古雷维奇。这是数论朗兰兹纲领中的一个重要课题,最近也是弦理论中的一个重要课题。PI和Gourevitch将采用Whittaker泛函的方法,这是研究大型自守表示的传统工具。然而,PI和合作者最近引入了一类更精细的泛函,它们非常适合研究小表示。这将应用于量子引力,其中小自守表示作为对爱因斯坦广义相对论的某些量子修正而出现。该项目的第二部分将研究Dirichlet级数的高维类似物,它推广了著名的Riemann zeta函数。PI将使用双仿射Hecke代数来研究这些系列,这是理解麦克唐纳多项式对称性的传统工具-本身就是代数组合学研究的中心对象。PI和合作者最近发现了这些代数的一类新的表示,称为元代数表示,这对研究多重狄利克雷级数有相当大的希望。本课程的第三部分将发展卡佩利微分算子的理论。这些算子起源于经典的不变量理论,它构成了世纪数学的很大一部分。他们还在Atiyah-Bott-Patodi的指标定理方法中发挥了关键作用,该定理是20世纪数学的一大亮点。PI和合作者将Capelli算子扩展到李超代数和量子群的现代领域。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Metaplectic representations of Hecke algebras, Weyl group actions, and associated polynomials
Hecke 代数、Weyl 群作用和相关多项式的 Metaplectic 表示
- DOI:10.1007/s00029-021-00654-1
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Sahi, Siddhartha;Stokman, Jasper V.;Venkateswaran, Vidya
- 通讯作者:Venkateswaran, Vidya
Interpolation Polynomials, Bar Monomials, and Their Positivity
插值多项式、条形单项式及其正性
- DOI:10.1093/imrn/rnac049
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Naqvi, Yusra;Sahi, Siddhartha;Sergel, Emily
- 通讯作者:Sergel, Emily
From Cauchy’s determinant formula to bosonic and fermionic immanant identities
从柯西行列式到玻色子和费米子内在恒等式
- DOI:10.1016/j.ejc.2022.103683
- 发表时间:2023
- 期刊:
- 影响因子:1
- 作者:Khare, Apoorva;Sahi, Siddhartha
- 通讯作者:Sahi, Siddhartha
Some Remarks on Non-Symmetric Interpolation Macdonald Polynomials
关于非对称插值麦克唐纳多项式的一些评论
- DOI:10.1093/imrn/rnz229
- 发表时间:2019
- 期刊:
- 影响因子:1
- 作者:Sahi, Siddhartha;Stokman, Jasper
- 通讯作者:Stokman, Jasper
Eulerianity of Fourier coefficients of automorphic forms
- DOI:10.1090/ert/565
- 发表时间:2020-04
- 期刊:
- 影响因子:0
- 作者:D. Gourevitch;H. Gustafsson;A. Kleinschmidt;D. Persson;S. Sahi
- 通讯作者:D. Gourevitch;H. Gustafsson;A. Kleinschmidt;D. Persson;S. Sahi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siddhartha Sahi其他文献
The Capelli eigenvalue problem for quantum groups
- DOI:
10.1007/s00029-024-01003-8 - 发表时间:
2024-12-12 - 期刊:
- 影响因子:1.200
- 作者:
Gail Letzter;Siddhartha Sahi;Hadi Salmasian - 通讯作者:
Hadi Salmasian
Siddhartha Sahi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siddhartha Sahi', 18)}}的其他基金
Workshop on Symmetric Spaces, Their Generalizations, and Special Functions
对称空间及其概括和特殊函数研讨会
- 批准号:
1939600 - 财政年份:2020
- 资助金额:
$ 13.16万 - 项目类别:
Standard Grant
Workshop on Hecke Algebras and Lie Theory
赫克代数和李理论研讨会
- 批准号:
1623501 - 财政年份:2016
- 资助金额:
$ 13.16万 - 项目类别:
Standard Grant
Representation Theory of Reductive Groups
还原群的表示论
- 批准号:
9623035 - 财政年份:1996
- 资助金额:
$ 13.16万 - 项目类别:
Standard Grant
Unipotent Representations and a Generalization of the Theta Correspondence
单能表示和 Theta 对应的推广
- 批准号:
9317838 - 财政年份:1993
- 资助金额:
$ 13.16万 - 项目类别:
Continuing Grant
Mathematical Sciences: Spectral Analysis of Differential Operators on Hermitian Symmetric Spaces
数学科学:厄米对称空间上微分算子的谱分析
- 批准号:
9005111 - 财政年份:1990
- 资助金额:
$ 13.16万 - 项目类别:
Continuing Grant
相似国自然基金
枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
- 批准号:31871988
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
- 批准号:61774171
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
- 批准号:38870708
- 批准年份:1988
- 资助金额:3.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 13.16万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 13.16万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333889 - 财政年份:2024
- 资助金额:
$ 13.16万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333888 - 财政年份:2024
- 资助金额:
$ 13.16万 - 项目类别:
Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 13.16万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 13.16万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 13.16万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 13.16万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333890 - 财政年份:2024
- 资助金额:
$ 13.16万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134747 - 财政年份:2024
- 资助金额:
$ 13.16万 - 项目类别:
Standard Grant














{{item.name}}会员




