Workshop on Symmetric Spaces, Their Generalizations, and Special Functions

对称空间及其概括和特殊函数研讨会

基本信息

  • 批准号:
    1939600
  • 负责人:
  • 金额:
    $ 1.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

This award will support participation by U.S.-based mathematicians, especially graduate students and other early-career researchers, in the upcoming international workshop and conference on Symmetric Spaces, Their Generalizations, and Special Functions, which will be held at the University of Ottawa from May 14 until May 17, 2020. The goal of the workshop is to foster the international collaboration of researchers in several areas connected to representation theory and algebraic combinatorics, including Lie superalgebras, quantized enveloping algebras, and algebraic combinatorics. The rationale for this activity is recent advancements that indicate new links between the aforementioned areas, and its goal is to investigate open problems that are spawned by these advancements and examine new strategies for solving them. The workshop will also have a substantial pedagogical component in the form of three mini-courses that will cover background and recent exciting progress in its focus areas. These mini-courses will be accessible for non-experts, including graduate students and junior researchers.Recent results hint at a new and promising connection between quantized symmetric spaces and interpolation polynomials. A natural and important problem that lies at the intersection of the aforementioned areas is to define and investigate the properties of q-deformations of Capelli operators in a uniform way. In addition, for (non-quantized) symmetric spaces of Lie superalgebras that are associated to BC-type root systems, an analogous relation between invariant differential operators and interpolation polynomials is yet to be established. We hope that the conference will provide an environment for experts to exchange their ideas for these interdisciplinary problems. The website for the workshop is http://www.fields.utoronto.ca/activities/19-20/symmetric-spaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将支持美国的参与-基于数学家,特别是研究生和其他早期职业研究人员,在即将举行的国际研讨会和对称空间,其推广和特殊函数会议,这将在渥太华大学举行,从5月14日至2020年5月17日。该研讨会的目标是促进研究人员在与表示论和代数组合学相关的几个领域的国际合作,包括李超代数,量化包络代数和代数组合学。这项活动的理由是最近的进展表明上述领域之间的新联系,其目标是调查这些进展产生的公开问题,并审查解决这些问题的新战略。讲习班还将有一个实质性的教学部分,即三个小型课程,涵盖其重点领域的背景和最近令人兴奋的进展。这些迷你课程将为非专家,包括研究生和初级研究人员访问。最近的结果暗示在量化对称空间和插值多项式之间的一个新的和有前途的连接。一个自然的和重要的问题,位于上述领域的交叉点是定义和调查的性质的q变形的Capelli算子在一个统一的方式。此外,对于与BC型根系相关的李超代数的(非量子化)对称空间,不变微分算子和插值多项式之间的类似关系尚未建立。我们希望这次会议将为专家们提供一个环境,就这些跨学科问题交换意见。该研讨会的网站是http://www.fields.utoronto.ca/activities/19-20/symmetric-spaces.This奖反映了NSF的法定使命,并已被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interpolation Polynomials, Bar Monomials, and Their Positivity
插值多项式、条形单项式及其正性
From Cauchy’s determinant formula to bosonic and fermionic immanant identities
从柯西行列式到玻色子和费米子内在恒等式
  • DOI:
    10.1016/j.ejc.2022.103683
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Khare, Apoorva;Sahi, Siddhartha
  • 通讯作者:
    Sahi, Siddhartha
Some Remarks on Non-Symmetric Interpolation Macdonald Polynomials
关于非对称插值麦克唐纳多项式的一些评论
Eulerianity of Fourier coefficients of automorphic forms
CAPELLI OPERATORS FOR SPHERICAL SUPERHARMONICS AND THE DOUGALL–RAMANUJAN IDENTITY
球面超谐波的 CAPELLI 算子和 DOUGALL-RAMANUJAN 恒等式
  • DOI:
    10.1007/s00031-021-09655-y
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    SAHI, SIDDHARTHA;SALMASIAN, HADI;SERGANOVA, VERA
  • 通讯作者:
    SERGANOVA, VERA
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Siddhartha Sahi其他文献

The Capelli eigenvalue problem for quantum groups
  • DOI:
    10.1007/s00029-024-01003-8
  • 发表时间:
    2024-12-12
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Gail Letzter;Siddhartha Sahi;Hadi Salmasian
  • 通讯作者:
    Hadi Salmasian

Siddhartha Sahi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Siddhartha Sahi', 18)}}的其他基金

NSF-BSF Research in Representation Theory with Applications to Number Theory and Physics
NSF-BSF 表示论及其在数论和物理学中的应用研究
  • 批准号:
    2001537
  • 财政年份:
    2020
  • 资助金额:
    $ 1.78万
  • 项目类别:
    Standard Grant
Workshop on Hecke Algebras and Lie Theory
赫克代数和李理论研讨会
  • 批准号:
    1623501
  • 财政年份:
    2016
  • 资助金额:
    $ 1.78万
  • 项目类别:
    Standard Grant
Representation Theory of Lie Groups
李群表示论
  • 批准号:
    0301969
  • 财政年份:
    2003
  • 资助金额:
    $ 1.78万
  • 项目类别:
    Continuing Grant
Root Systems and Special Functions
根系统和特殊功能
  • 批准号:
    0070814
  • 财政年份:
    2000
  • 资助金额:
    $ 1.78万
  • 项目类别:
    Standard Grant
Representation Theory of Reductive Groups
还原群的表示论
  • 批准号:
    9623035
  • 财政年份:
    1996
  • 资助金额:
    $ 1.78万
  • 项目类别:
    Standard Grant
Unipotent Representations and a Generalization of the Theta Correspondence
单能表示和 Theta 对应的推广
  • 批准号:
    9317838
  • 财政年份:
    1993
  • 资助金额:
    $ 1.78万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Spectral Analysis of Differential Operators on Hermitian Symmetric Spaces
数学科学:厄米对称空间上微分算子的谱分析
  • 批准号:
    9005111
  • 财政年份:
    1990
  • 资助金额:
    $ 1.78万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
  • 批准号:
    2338933
  • 财政年份:
    2024
  • 资助金额:
    $ 1.78万
  • 项目类别:
    Continuing Grant
Coding theory and Design theory for probability measures on symmetric spaces
对称空间概率测度的编码理论和设计理论
  • 批准号:
    23KJ1641
  • 财政年份:
    2023
  • 资助金额:
    $ 1.78万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Comprehensive study of various geometries with harmonic maps to symmetric spaces as a core
以对称空间调和映射为核心的各种几何学的综合研究
  • 批准号:
    22K03304
  • 财政年份:
    2022
  • 资助金额:
    $ 1.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Homology growth in families of locally symmetric spaces
局部对称空间族中的同源增长
  • 批准号:
    RGPIN-2018-04784
  • 财政年份:
    2022
  • 资助金额:
    $ 1.78万
  • 项目类别:
    Discovery Grants Program - Individual
Symmetric spaces, topology and analysis
对称空间、拓扑和分析
  • 批准号:
    RGPIN-2019-03964
  • 财政年份:
    2022
  • 资助金额:
    $ 1.78万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric analysis of convolution operators on symmetric spaces and its applications to integral geometry and inverse problems
对称空间上卷积算子的几何分析及其在积分几何和反问题中的应用
  • 批准号:
    21K03264
  • 财政年份:
    2021
  • 资助金额:
    $ 1.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Symmetric spaces, topology and analysis
对称空间、拓扑和分析
  • 批准号:
    RGPIN-2019-03964
  • 财政年份:
    2021
  • 资助金额:
    $ 1.78万
  • 项目类别:
    Discovery Grants Program - Individual
Homology growth in families of locally symmetric spaces
局部对称空间族中的同源增长
  • 批准号:
    RGPIN-2018-04784
  • 财政年份:
    2021
  • 资助金额:
    $ 1.78万
  • 项目类别:
    Discovery Grants Program - Individual
At Infinity of Symmetric Spaces
在无限对称空间
  • 批准号:
    441425994
  • 财政年份:
    2020
  • 资助金额:
    $ 1.78万
  • 项目类别:
    Priority Programmes
Submanifold theory related to the twistor space of quaternionic symmetric spaces
与四元对称空间扭量空间相关的子流形理论
  • 批准号:
    20K03575
  • 财政年份:
    2020
  • 资助金额:
    $ 1.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了