Ultra-Low Phase Noise, Ultra-Wide Band Silicon Photonics Millimeter-wave Signal Generators With Automatic Calibration
具有自动校准功能的超低相位噪声、超宽带硅光子毫米波信号发生器
基本信息
- 批准号:2002657
- 负责人:
- 金额:$ 39.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Millimeter-wave (mm-wave) signal generation with ultra-low phase noise, ultra-wideband and high-resolution is an essential challenge for many applications including modern instrumentation, software-defined radios for wireless communications, radars, and warfare systems. While it is extremely challenging with conventional electronic signal generation technology, mm-wave silicon-photonics technology has the potential to provide mm-wave signal generators with simultaneous ultra-wide bandwidth, ultra-low phase noise, high frequency resolution and small footprint. Utilizing photonics modulators, filters and delay elements along with integrated electronics will allow the use of mm-wave silicon-photonics to fulfill these requirements. This project will demonstrate ultra-low phase noise, ultra-wideband, and high-resolution mm-wave silicon-photonics signal generators to advance wireless technologies for applications such as modern instrumentation, software-defined radios, radars, and warfare systems. The research has the potential to revolutionize the future of instrumentation and wireless industries and provide further technological diversification for the semiconductor industry. In addition to the aforementioned technical impacts, the project also promotes outreach activities to increase participation of under-represented groups in science and engineering, including annual summer camps for high school students. The research and educational results of this work will be disseminated to academic, industrial and government sectors.The main goal of this project is to develop novel chip-scale mm-wave silicon-photonics signal generator architectures with ultra-low phase noise, ultra-wideband, continuous tuning range, and high-resolution capabilities implemented using hybrid Silicon-on-Insulator (SOI) photonics and Complementary-Metal-Oxide-Semiconductor (CMOS) chips. The emergence of silicon-photonics technology has enabled the potential of realizing silicon-photonics optoelectronic oscillator (OEO) to achieve microwave signal generation within the size and power consumption of small form-factor systems. However, the potential realization of existing silicon-photonics OEOs has two main challenges; first, the tuning range and phase noise are limited due to poor OEO architectural choices and, second, the photonics components’ initial responses are significantly distorted due to the process variation of silicon-photonics technology, so an automatic calibration methodology of these initial responses is missing. CMOS electronics can be employed along with the silicon-photonics OEO to perform phase/frequency locking, laser phase noise reduction, and automatic calibration of silicon-photonics components. Employing electronic control circuitry implemented on CMOS chip allows for the signal generator phase/frequency locking, laser phase noise reduction, and compensation of severe process and temperature variations in silicon-photonics. The research objectives are: (1) architecture definition of a mm-wave silicon-photonics signal generator based on an integrated phase/frequency-locked OEO with laser phase noise cancellation along with performance analysis, (2) development of a novel silicon-photonics OEO architecture and its components including modulator, filter and delay element, and algorithms/hardware for their automatic tuning, (3) implementation of novel CMOS prototypes which include the OEO electronic circuitry, laser phase noise reduction, phase/frequency locking loop and automatic tuning hardware, and (4) hybrid integration of silicon-photonics and CMOS chips and perform the required tests for the entire unit.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
具有超低相位噪声、超宽带和高分辨率的毫米波(mm-wave)信号产生是许多应用的基本挑战,包括现代仪器、用于无线通信的软件定义无线电、雷达和战争系统。虽然传统的电子信号产生技术极具挑战性,但毫米波硅光子技术有潜力提供同时具有超宽带宽,超低相位噪声,高频率分辨率和小占地的毫米波信号发生器。利用光子调制器、滤波器和延迟元件以及集成电子器件将允许使用毫米波硅光子学来满足这些要求。该项目将演示超低相位噪声、超宽带和高分辨率毫米波硅光子信号发生器,以推进现代仪器、软件定义无线电、雷达和战争系统等应用的无线技术。这项研究有可能彻底改变仪器仪表和无线行业的未来,并为半导体行业提供进一步的技术多样化。除了上述技术影响外,该项目还促进了推广活动,以增加未被充分代表的群体在科学和工程领域的参与,包括每年为高中生举办的夏令营。这项工作的研究和教育成果将分发给学术界、工业界和政府部门。该项目的主要目标是开发新型芯片级毫米波硅光子信号发生器架构,该架构具有超低相位噪声、超宽带、连续调谐范围和高分辨率能力,采用混合绝缘体上硅(SOI)光子学和互补金属氧化物半导体(CMOS)芯片实现。硅光子学技术的出现使得实现硅光子学光电子振荡器(OEO)在小尺寸系统的尺寸和功耗范围内实现微波信号的产生成为可能。然而,现有硅光子学OEOs的潜在实现存在两个主要挑战;首先,由于OEO结构选择不佳,调谐范围和相位噪声受到限制;其次,由于硅光子技术的工艺变化,光子元件的初始响应显着扭曲,因此缺乏这些初始响应的自动校准方法。CMOS电子器件可以与硅光子OEO一起使用,以执行相位/频率锁定,激光相位噪声降低和硅光子元件的自动校准。采用CMOS芯片上实现的电子控制电路允许信号发生器相位/频率锁定,激光相位噪声降低,以及补偿硅光子学中严重的工艺和温度变化。研究目标是:(1)基于集成锁相/锁频激光相位噪声消除的毫米波硅光子学信号发生器的架构定义及性能分析;(2)开发新型硅光子学OEO架构及其组件,包括调制器、滤波器和延迟元件,以及用于自动调谐的算法/硬件;(3)实现新型CMOS原型,其中包括OEO电子电路、激光相位噪声消除;相位/频率锁定环路和自动调谐硬件,以及(4)硅光子学和CMOS芯片的混合集成,并对整个单元进行所需的测试。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kamran Entesari其他文献
Kamran Entesari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kamran Entesari', 18)}}的其他基金
SWIFT: Reconfigurable Microwave Silicon Photonics Filters and Passive-User-Friendly Protocols for Spectrum Coexistence
SWIFT:可重新配置的微波硅光子滤波器和无源用户友好的频谱共存协议
- 批准号:
2127721 - 财政年份:2021
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
Collaborative Research: SpecEES: Towards Energy and Spectrally Efficient Millimeter Wave MIMO Platforms - A Unified System, Circuits, and Machine Learning Framework
合作研究:SpecEES:迈向能源和频谱高效的毫米波 MIMO 平台 - 统一的系统、电路和机器学习框架
- 批准号:
2116498 - 财政年份:2020
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
SpecEES: Spectrum and Energy Efficient Silicon Photonic Millimeter-wave Remote Antenna Units for Radio over Fiber Application
SpecEES:用于光纤无线电应用的频谱和节能硅光子毫米波远程天线单元
- 批准号:
1824341 - 财政年份:2018
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
A Wideband Silicon Photonic Millimeter-wave Beam-forming Transmitter with Automatic Beam Calibration
具有自动光束校准功能的宽带硅光子毫米波波束形成发射机
- 批准号:
1807281 - 财政年份:2018
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
Wideband Silicon-Based Receivers for RF/Microwave Spectrum Sensing
用于射频/微波频谱传感的宽带硅基接收器
- 批准号:
1230274 - 财政年份:2012
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
CAREER: Versatile Integrated Platforms for Broadband Microwave Dielectric Spectroscopy
职业:宽带微波介电谱的多功能集成平台
- 批准号:
1054819 - 财政年份:2011
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
Miniaturized Waveguide RF MEMS Tunable Filters
小型化波导 RF MEMS 可调谐滤波器
- 批准号:
0901088 - 财政年份:2009
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
相似国自然基金
骨髓微环境中正常造血干/祖细胞新亚群IL7Rα(-)LSK(low)细胞延缓急性髓系白血病进程的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
MSCEN聚集体抑制CD127low单核细胞铜死亡治疗SLE 的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
新型PDL1+CXCR2low中性粒细胞在脉络膜新生血管中的作用及机制研究
- 批准号:82271095
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
CD9+CD55low脂肪前体细胞介导高脂诱导脂肪组织炎症和2型糖尿病的作用和机制研究
- 批准号:82270883
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
CD21low/-CD23-B细胞亚群在间质干细胞治疗慢性移植物抗宿主病中的作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
探究Msi1+Lgr5neg/low肠道干细胞抵抗辐射并驱动肠上皮再生的新机制
- 批准号:82270588
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
m6A去甲基化酶FTO通过稳定BRD9介导表观重塑在HIF2α(low/-)肾透明细胞癌中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:54.7 万元
- 项目类别:面上项目
circEFEMP1招募PRC2促进HOXA6启动子组蛋白甲基化修饰调控Claudin4-Low型TNBC迁移侵袭和转移的作用机制
- 批准号:82002807
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
上皮间质转化在Numb-/low前列腺癌细胞雄激素非依赖性中的作用及机制
- 批准号:82003061
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Bach2调控CD45RA-Foxp3low T细胞影响B细胞功能及其在系统性红斑狼疮中作用的机制研究
- 批准号:81873863
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
Ultra Low Phase Noise Analysis & Measurement
超低相位噪声分析
- 批准号:
10089379 - 财政年份:2024
- 资助金额:
$ 39.76万 - 项目类别:
Collaborative R&D
SBIR Phase II: Rechargeable Carbon-Oxygen Battery for Ultra-Low-Cost Renewable Energy Storage
SBIR第二阶段:用于超低成本可再生能源存储的可充电碳氧电池
- 批准号:
2222588 - 财政年份:2023
- 资助金额:
$ 39.76万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Development of an ultra-low-cost distributed wind turbine
SBIR第一阶段:开发超低成本分布式风力发电机
- 批准号:
2225406 - 财政年份:2023
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
SBIR Phase I: Ultra-low loss beamformer and combiner-first technology for lower power, consumption phased arrays
SBIR 第一阶段:超低损耗波束形成器和组合器优先技术,用于降低功耗、消耗相控阵
- 批准号:
2335496 - 财政年份:2023
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
Creation of ultra-low defect gallium nitride crystals using a novel hybrid-type high-speed vapor phase epitaxy
使用新型混合型高速气相外延制造超低缺陷氮化镓晶体
- 批准号:
23K17743 - 财政年份:2023
- 资助金额:
$ 39.76万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
SBIR Phase I: Ultra-Low-Cost Distributed Spectrum Monitoring
SBIR 第一阶段:超低成本分布式频谱监测
- 批准号:
2112062 - 财政年份:2022
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
SBIR Phase I: Low latency and ultra high quality video streaming platform for highly immersive virtual reality (VR) experiences
SBIR 第一阶段:低延迟和超高质量视频流平台,提供高度沉浸式虚拟现实 (VR) 体验
- 批准号:
2151286 - 财政年份:2022
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
SBIR Phase I: Low Noise Amplifier Running Fast At Ultra-low Currents (pp # 00035239)
SBIR 第一阶段:低噪声放大器在超低电流下快速运行(pp
- 批准号:
2208366 - 财政年份:2022
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
SBIR Phase II: Research and development of production-scale high-efficiency Thermal Photovoltaic (TPV) cells to enable ultra-low cost energy storage.
SBIR 第二阶段:研究和开发生产规模的高效热光伏(TPV)电池,以实现超低成本储能。
- 批准号:
1951284 - 财政年份:2020
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
Collaborative Research: Harnessing Crystalline Phase Transition in 2D Materials for Ultra-Low-Power and Flexible Electronics
合作研究:利用二维材料中的晶体相变实现超低功耗和柔性电子产品
- 批准号:
2015670 - 财政年份:2019
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant