CDS&E: Collaborative Research: Hierarchical Kernel Matrices for Scientific and Data Applications
CDS
基本信息
- 批准号:2003683
- 负责人:
- 金额:$ 31.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Kernel matrices in machine learning and scientific computing describe the relationships between collections of points which may represent various types of information. The increasing size of data sets in various disciplines and the increasing computational capability of computer hardware make it essential that our algorithms and software for kernel matrices are scalable, and that the time it takes for their execution grows linearly or close to linearly, with the problem size. Otherwise, such large-scale data problems may not be tractable. This project addresses the scaling bottlenecks associated with handling the kernel matrix by exploiting a hierarchical structure that is often found in these matrices. By accelerating computations with kernel matrices, this research enables large-scale data analysis and scientific simulation in diverse areas such as uncertainty quantification, integral equation problems, particle simulations, and geostatistics. High-performance software implementing the newly developed methods will be developed in an open-source environment.This project specifically addresses high-dimensional problems, the use of specialized kernel functions in machine learning, and the high initial computational cost of constructing a hierarchical representation for a kernel matrix. New methods developed will be applied to large-scale cases in a scientific application and a machine learning application: Brownian dynamics and Gaussian process regression. In machine learning, the new methods will complement existing large-scale approaches for Gaussian processes. High-performance software will address specific scaling challenges in constructing hierarchical matrices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习和科学计算中的核矩阵描述了可能代表各种类型信息的点集合之间的关系。不同学科的数据集的大小不断增加,计算机硬件的计算能力不断增加,这使得我们的核矩阵算法和软件具有可伸缩性,并且执行它们所需的时间随着问题的大小线性或接近线性地增长。否则,如此大规模的数据问题可能难以处理。该项目通过利用经常在这些矩阵中发现的层次结构来解决与处理内核矩阵相关的扩展瓶颈。通过加速核矩阵的计算,这项研究使不同领域的大规模数据分析和科学模拟成为可能,如不确定性量化、积分方程式问题、粒子模拟和地质统计学。实现新开发的方法的高性能软件将在开放源代码环境中开发。该项目专门解决高维问题,在机器学习中使用专门的核函数,以及构建核矩阵的分层表示的高初始计算成本。开发的新方法将在一个科学应用程序和一个机器学习应用程序中应用于大规模案例:布朗动力学和高斯过程回归。在机器学习中,新方法将补充现有的针对高斯过程的大规模方法。高性能软件将解决构建分层矩阵中的特定扩展挑战。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A hierarchical matrix approach for computing hydrodynamic interactions
- DOI:10.1016/j.jcp.2021.110761
- 发表时间:2021-10-14
- 期刊:
- 影响因子:4.1
- 作者:Xing,Xin;Huang,Hua;Chow,Edmond
- 通讯作者:Chow,Edmond
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edmond Chow其他文献
Distributed Southwell: An Iterative Method with Low Communication Costs
分布式Southwell:一种低通信成本的迭代方法
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jordi Wolfson;Edmond Chow - 通讯作者:
Edmond Chow
Exploiting 162-Nanosecond End-to-End Communication Latency on Anton
利用 Anton 上 162 纳秒的端到端通信延迟
- DOI:
10.1109/sc.2010.23 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
R. Dror;J. P. Grossman;Kenneth M. Mackenzie;Brian Towles;Edmond Chow;J. Salmon;C. Young;Joseph A. Bank;Brannon Batson;Martin M. Deneroff;J. Kuskin;Richard H. Larson;Mark A. Moraes;D. E. Shaw - 通讯作者:
D. E. Shaw
Fault tolerant variants of the fine-grained parallel incomplete LU factorization
细粒度并行不完全 LU 分解的容错变体
- DOI:
10.22360/springsim.2017.hpc.050 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Evan Coleman;M. Sosonkina;Edmond Chow - 通讯作者:
Edmond Chow
SPARC v2.0.0: Spin-orbit coupling, dispersion interactions, and advanced exchange-correlation functionals
SPARC v2.0.0:自旋轨道耦合、色散相互作用和高级交换相关泛函
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Boqin Zhang;Xin Jing;Qimen Xu;Shashikant Kumar;Abhiraj Sharma;Lucas Erlandson;S. Sahoo;Edmond Chow;A. Medford;J. Pask;Phanish Suryanarayana - 通讯作者:
Phanish Suryanarayana
Version 2.0.0 -- SPARC: Simulation Package for Ab-initio Real-space Calculations
版本 2.0.0 -- SPARC:用于从头算实空间计算的仿真包
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Boqin Zhang;Xin Jing;Qimen Xu;Shashikant Kumar;Abhiraj Sharma;Lucas Erlandson;S. Sahoo;Edmond Chow;A. Medford;J. Pask;Phanish Suryanarayana - 通讯作者:
Phanish Suryanarayana
Edmond Chow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edmond Chow', 18)}}的其他基金
CDS&E: Sustained risk mitigation of carbon storage with seismic monitoring through simulation and Bayesian inference
CDS
- 批准号:
2203821 - 财政年份:2022
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
CDS&E: Exploiting Multiple Levels of Parallelism in Quantum Chemistry Software
CDS
- 批准号:
1609842 - 财政年份:2016
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
CDS&E: Matrix-Free Algorithms for Large-Scale Hydrodynamic Brownian Simulations
CDS
- 批准号:
1306573 - 财政年份:2013
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335762 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
- 批准号:
2336132 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
- 批准号:
2338394 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Continuing Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
- 批准号:
2325380 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant