Collaborative Research: Enzyme-Powered, Programmable Active Matter

合作研究:酶驱动的可编程活性物质

基本信息

  • 批准号:
    2004400
  • 负责人:
  • 金额:
    $ 28.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Non-technical Abstract:Imagine a world in which roads can sense their damage and repair themselves like human skin, or in which natural disasters such as forest fires and landslides are prevented by materials that change shape and stiffness automatically, or in which clothing materials change their porosity to become personal protective equipment (PPE) when the clothing itself senses airborne pathogens. These futuristic ideas are currently science fiction, but if we have any hope of creating these amazing technologies, we need to begin today. This collaborative project seeks to explore the fundamental underpinnings of the materials needed for such applications. Specifically, in order to design any of these futuristic devices, we need to have materials that are self-powered and assembled hierarchically from energy-using building blocks. Luckily, many biological systems, such as cells, plants, and humans, are already capable of sensing their environment and responding by moving, changing shape, or releasing chemicals. The basic building blocks of these biological “systems” are enzymes, nanoscale machines made of protein that come in a variety of shapes and sizes. In order to dissect and begin to create an understanding of how enzymes can animate matter, our team will use enzymes to power new synthetic materials at the nanoscale to microscale. In the future, these nanoscale materials can be assembled themselves to create new larger scale active materials. Technical Abstract:The scientific objective of this project is to understand the physics of synthetic active materials powered by enzymes. The research team combines expertise in DNA nanotechnology, enzyme kinetics, single-particle tracking, and sensitive force measurements to address the following objectives: (1) The team uses DNA origami to design, create, and characterize a suite of active particles, driven by enzyme catalysis, with programmable size, shape, flexibility, and location of propulsive enzymes. This objective addresses a need to create new nano- to mesoscale active particles and uses these particles to understand the mechanisms governing enhanced motility. (2) The team characterizes the properties of an active bath of enzyme-driven particles via the fluctuation spectrum, dissipation of energy, and the ability of an active bath to propel passive particles to extract work from noise. A combined study of the single-particle motility and the active fluctuations that emerge from collections of active particles will reveal a wealth of new information, including the mechanisms of enhanced transport of active particles, as well as a non-equilibrium statistical mechanical description of active fluctuations. The importance of this approach lies in the potential to specify the microscopic details of active particles, like their size, shape, and flexibility, and then to discover how these attributes alter the single-particle and collective behaviors.This DMR grant supports research to understand the physics of synthetic active materials powered by enzymes with funding from the Condensed Matter Physics (CMP) and Biomaterials (BMAT) Programs in the Division of Materials Research of the Mathematical and Physical Sciences Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:想象一下这样一个世界,在这个世界中,道路可以像人类皮肤一样感知它们的损坏并自我修复,或者通过自动改变形状和刚度的材料来防止森林火灾和山体滑坡等自然灾害,或者当衣服本身感知到空气中的病原体时,衣服材料改变其孔隙率成为个人防护设备(PPE)。这些未来的想法目前是科幻小说,但如果我们有任何希望创造这些惊人的技术,我们需要开始今天。这个合作项目旨在探索这些应用所需材料的基本基础。具体来说,为了设计任何这些未来的设备,我们需要有自供电的材料,并从能源使用的积木分层组装。幸运的是,许多生物系统,如细胞、植物和人类,已经能够感知环境,并通过移动、改变形状或释放化学物质来做出反应。这些生物“系统”的基本组成部分是酶,由各种形状和大小的蛋白质制成的纳米级机器。为了剖析和开始创造一个酶如何激活物质的理解,我们的团队将使用酶来驱动新的合成材料,从纳米级到微米级。在未来,这些纳米材料可以自行组装,以创造新的更大规模的活性材料。技术摘要:该项目的科学目标是了解由酶驱动的合成活性材料的物理学。该研究团队结合了DNA纳米技术,酶动力学,单粒子跟踪和敏感力测量的专业知识,以解决以下目标:(1)该团队使用DNA折纸来设计,创建和表征一套活性粒子,由酶催化驱动,具有可编程的大小,形状,灵活性和推进酶的位置。该目标解决了创建新的纳米至中尺度活性颗粒的需要,并使用这些颗粒来理解管理增强的运动性的机制。(2)该团队通过波动光谱,能量耗散以及主动浴推动被动粒子从噪声中提取功的能力来表征酶驱动粒子的主动浴的特性。对单个粒子运动性和从活性粒子集合中出现的活性波动的综合研究将揭示丰富的新信息,包括活性粒子增强传输的机制,以及活性波动的非平衡统计力学描述。这种方法的重要性在于可以指定活性颗粒的微观细节,如它们的大小,形状和灵活性,然后发现这些属性如何改变单粒子和集体行为。该DMR资助支持研究,以了解由凝聚态物理学(CMP)和生物材料(BMAT)资助的酶驱动的合成活性材料的物理学该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonequilibrium fluctuations and nonlinear response of an active bath
  • DOI:
    10.1103/physrevresearch.4.023043
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Hunter Seyforth;Mauricio Gomez;W. Rogers;J. Ross;W. Ahmed
  • 通讯作者:
    Hunter Seyforth;Mauricio Gomez;W. Rogers;J. Ross;W. Ahmed
Comparison of different approaches to single-molecule imaging of enhanced enzyme diffusion
增强酶扩散的单分子成像不同方法的比较
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xu, Mengqi;Rogers, W. Benjamin;Ahmed, Wylie W.;Ross, Jennifer L.
  • 通讯作者:
    Ross, Jennifer L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Rogers其他文献

Sex Differences in Mate Choice in a Monogamous Biparental Fish, the Midas Cichlid (Cichlasoma citrinellum)
一夫一妻制双亲鱼——迈达斯丽鱼科鱼(Cichlasoma citrinellum)的择偶性别差异
  • DOI:
    10.1111/j.1439-0310.1991.tb00250.x
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    William Rogers;G. Barlow
  • 通讯作者:
    G. Barlow
Parental investment and division of labor in the Midas Cichlid (Cichlasoma citrinellum)
米达斯丽鱼科鱼 (Cichlasoma citrinellum) 的亲代投资和劳动分工
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    William Rogers
  • 通讯作者:
    William Rogers
PHYTOESTROGEN BLOOD LEVELS, MAJOR ADVERSE CARDIAC EVENTS AND ANGINA HOSPITALIZATION: A REPORT FROM THE WOMEN's ISCHEMIA SYNDROME EVALUATION
  • DOI:
    10.1016/s0735-1097(20)32635-8
  • 发表时间:
    2020-03-24
  • 期刊:
  • 影响因子:
  • 作者:
    Lili Barsky;Galen Cook-Wiens;Mark Doyle;Chrisandra Shufelt;William Rogers;Carl J. Pepine;C. Noel Bairey Merz
  • 通讯作者:
    C. Noel Bairey Merz
Male Competition, Mating Success and Female Choice in a Seasonally Breeding Primate (Erythrocebus patas)
季节性繁殖灵长类动物(Erythrocebus patas)的雄性竞争、交配成功和雌性选择
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Chism;William Rogers
  • 通讯作者:
    William Rogers
1172-76 Healthcare costs for cardiovascular disease in women with and without obstructive coronary disease: Results from the National Institutes of Health-National Heart, Lung, and Blood Institutes-Sponsored Women's Ischemia Syndrome evaluation (WISE)
  • DOI:
    10.1016/s0735-1097(04)91781-0
  • 发表时间:
    2004-03-03
  • 期刊:
  • 影响因子:
  • 作者:
    Leslee J Shaw;Barry L Sharaf;B.Delia Johnson;George Sopko;Carl J Pepine;Gerry Pohost;Steve Reis;William Rogers;Sheryl F Kelsey;C.Noel Bairey Merz; The WISE Study Group
  • 通讯作者:
    The WISE Study Group

William Rogers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Rogers', 18)}}的其他基金

Dynamic Pathways to Crystallization of DNA-Coated Colloids
DNA 包被胶体结晶的动态途径
  • 批准号:
    2214590
  • 财政年份:
    2022
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Continuing Grant
Hierarchical Assembly and Dynamic Transitions of DNA-Coated Colloids
DNA 包被胶体的分层组装和动态转变
  • 批准号:
    1710112
  • 财政年份:
    2017
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Continuing Grant
Connecting to NSFnet
连接到 NSFnet
  • 批准号:
    9221260
  • 财政年份:
    1992
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: TRTech-PGR: PlantSynBio: FuncZyme: Building a pipeline for rapid prediction and functional validation of plant enzyme activities
合作研究:TRTech-PGR:PlantSynBio:FuncZyme:建立植物酶活性快速预测和功能验证的管道
  • 批准号:
    2310396
  • 财政年份:
    2023
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Standard Grant
Collaborative Research: TRTech-PGR: PlantSynBio: FuncZyme: Building a pipeline for rapid prediction and functional validation of plant enzyme activities
合作研究:TRTech-PGR:PlantSynBio:FuncZyme:建立植物酶活性快速预测和功能验证的管道
  • 批准号:
    2310395
  • 财政年份:
    2023
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Enzyme-Mimicking Catalysts for Cellulose Processing
合作研究:用于纤维素加工的模拟酶催化剂
  • 批准号:
    2246635
  • 财政年份:
    2023
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enzyme-Mimicking Catalysts for Cellulose Processing
合作研究:用于纤维素加工的模拟酶催化剂
  • 批准号:
    2246636
  • 财政年份:
    2023
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Continuing Grant
Collaborative Research: Ethylene-Forming Enzyme
合作研究:乙烯形成酶
  • 批准号:
    2203472
  • 财政年份:
    2022
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Standard Grant
Collaborative Research: MFB: Integrating Deep Learning and High-throughput Experimentation to Rapidly Navigate Protein Fitness Landscapes for Non-native Enzyme Catalysis
合作研究:MFB:整合深度学习和高通量实验,快速探索非天然酶催化的蛋白质适应性景观
  • 批准号:
    2226451
  • 财政年份:
    2022
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Directed Enzyme Evolution Accelerated by Machine Learning for Enhancing the Biodegradation of Emerging Contaminants
合作研究:机器学习加速定向酶进化,增强新兴污染物的生物降解
  • 批准号:
    2203628
  • 财政年份:
    2022
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Continuing Grant
Collaborative Research: Ethylene-Forming Enzyme
合作研究:乙烯形成酶
  • 批准号:
    2203630
  • 财政年份:
    2022
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Computational Investigation of Solvent Effects on Enzyme Catalysis
合作研究:CDS
  • 批准号:
    2217856
  • 财政年份:
    2022
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Continuing Grant
Collaborative Research: MFB: Integrating Deep Learning and High-throughput Experimentation to Rapidly Navigate Protein Fitness Landscapes for Non-native Enzyme Catalysis
合作研究:MFB:整合深度学习和高通量实验,快速探索非天然酶催化的蛋白质适应性景观
  • 批准号:
    2226475
  • 财政年份:
    2022
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了