Understanding antiferromagnetic spin-orbit heterostructures with a single-spin microscope
用单自旋显微镜了解反铁磁自旋轨道异质结构
基本信息
- 批准号:2004466
- 负责人:
- 金额:$ 44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical SummaryThis research seeks to understand and control a class of magnetic materials, antiferromagnets, that are abundant in nature but produce no macroscopic magnetic fields. In these materials, the atomic-scale sources of magnetism alternate directions and thus fully cancel when observed from a distance. Until recently, these materials have played little role in magnetic science and technology, with the principle application being the modification of other magnetic materials. However, the potential for antiferromagnetic materials as active elements that store and process information has emerged. Their advantages, including ultra-fast dynamics and insensitivity to applied magnetic fields, make them attractive for high-performance information storage. The research team’s approach acknowledges the critical role of material interfaces for advanced magnetic memory technologies. Additionally, this project addresses a key challenge in this field – that antiferromagnetic materials are difficult to study because they produce no magnetic fields except at atomic-scale distances from the sample. The team is tackling this challenge using an atom-scale quantum sensor scanned in nanoscale proximity to antiferromagnetic materials and their interfaces, thus enabling the measurement of otherwise undetectable magnetic fields at the smallest length scales. Training for graduate and undergraduate students contributes to a workforce with convergent knowledge in materials physics and quantum information technology. Additionally, this project provides hands-on science educational opportunities aimed at elementary school students that encourage positive relationships with role models and contributes to a scientifically literate society.Technical SummaryThis project examines interfaces between antiferromagnetic materials and materials with strong spin-orbit coupling with the main question: can spin-orbit coupling modify AF spin order? For example, the research team is examining the potential formation of an interfacial Dzyaloshinskii-Moriya interaction (or antisymmetric exchange) that induces chiral spin order and modifications to antiferromagnetic anisotropy at an interface. This project also seeks to understand how uncompensated magnetic moments, which are critical to the interfacial magnetism in antiferromagnet/ferromagnet heterostructures, contribute in the case of antiferromagnet/spin-orbit coupling interfaces. The magnetic materials that the research team work with include antiferromagnets such as nickel oxide, chromia, iridium manganese, iron rhodium and others, as well as ferrimagnets near compensation such as rare earth alloys and garnets, which enable temperature and compositional tuning of the net magnetization. The materials with strong spin-orbit coupling include heavy metals (Pt, Ta, W, Ir) and topological insulators (bismuth selenide and related materials). To understand spin order in these heterostructures, the research team must overcome the experimental difficulties associated with study of antiferromagnetic materials – the lack of an average magnetization that can be detected using conventional techniques. This project takes advantage of the exquisite sensitivity and spatial resolution that is possible using a scanning-probe nitrogen-vacancy center magnetic microscope. The team is using this quantum-enhanced sensor to detect the tiny magnetic fields at surfaces and interfaces, and they are developing new approaches designed for antiferromagnetic material imaging including coherence imaging, relaxometry, and image reconstruction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术概述本研究旨在理解和控制一类磁性材料,反铁磁体,它们在自然界中丰富,但不产生宏观磁场。在这些材料中,原子尺度的磁性源交替方向,因此当从远处观察时完全抵消。 直到最近,这些材料在磁性科学和技术中几乎没有发挥作用,主要应用是对其他磁性材料的改性。 然而,反铁磁材料作为存储和处理信息的有源元件的潜力已经出现。 它们的优点,包括超快的动力学和对外加磁场的不敏感性,使它们对高性能信息存储具有吸引力。 研究小组的方法承认材料界面对先进磁存储技术的关键作用。 此外,该项目还解决了该领域的一个关键挑战-反铁磁材料很难研究,因为它们除了在离样品原子尺度的距离外不会产生磁场。 该团队正在使用原子级量子传感器来应对这一挑战,该传感器在纳米级接近反铁磁材料及其界面处进行扫描,从而能够在最小的长度尺度上测量其他不可检测的磁场。 对研究生和本科生的培训有助于培养一支在材料物理和量子信息技术方面具有融合知识的员工队伍。 此外,该项目提供了动手科学教育的机会,旨在小学生,鼓励与榜样的积极关系,并有助于科学素养的society.Technical SummaryThis项目探讨反铁磁材料和材料之间的接口与强大的自旋轨道耦合的主要问题:自旋轨道耦合修改AF自旋顺序? 例如,研究小组正在研究界面Dzyaloshinskiii-Moriya相互作用(或反对称交换)的潜在形成,该相互作用诱导手性自旋顺序和界面处反铁磁各向异性的修改。 该项目还试图了解如何未补偿的磁矩,这是至关重要的反铁磁/铁磁异质结构的界面磁性,有助于反铁磁/自旋轨道耦合接口的情况下。 研究团队使用的磁性材料包括反铁磁体,如氧化镍,氧化铬,铱锰,铁铑等,以及接近补偿的亚铁磁体,如稀土合金和石榴石,它们可以实现净磁化的温度和成分调整。 具有强自旋轨道耦合的材料包括重金属(Pt、Ta、W、Ir)和拓扑绝缘体(硒化铋及相关材料)。 为了理解这些异质结构中的自旋顺序,研究小组必须克服与反铁磁材料研究相关的实验困难-缺乏可以使用传统技术检测到的平均磁化强度。 该项目利用了扫描探针氮空位中心磁显微镜的灵敏度和空间分辨率。 该团队正在使用这种量子增强传感器来检测表面和界面处的微小磁场,并正在开发用于反铁磁材料成像的新方法,包括相干成像,弛豫测量和图像重建。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Current-induced switching of thin film α−Fe2O3 devices imaged using a scanning single-spin microscope
使用扫描单旋转显微镜成像的薄膜αFe2O3器件的电流感应开关
- DOI:10.1103/physrevmaterials.7.064402
- 发表时间:2023
- 期刊:
- 影响因子:3.4
- 作者:Guo, Qiaochu;D'Addario, Anthony;Cheng, Yang;Kline, Jeremy;Gray, Isaiah;Cheung, Hil Fung;Yang, Fengyuan;Nowack, Katja C.;Fuchs, Gregory D.
- 通讯作者:Fuchs, Gregory D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Fuchs其他文献
Sitting in our own soup? Combined sewers, climate change and NATURE-BASED SOLUTIONS FOR urban water MANAGEMENT in Berlin
坐在我们自己的汤里?
- DOI:
10.1016/j.nbsj.2024.100113 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Tom Wild;Gregory Fuchs;McKenna Davis - 通讯作者:
McKenna Davis
Gregory Fuchs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Fuchs', 18)}}的其他基金
EAGER: Quantum Manufacturing: Enabling Integrated Quantum Network Nodes
EAGER:量子制造:实现集成量子网络节点
- 批准号:
2240267 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
Current-driven magnetic sources at microwave frequency
微波频率电流驱动磁源
- 批准号:
1708016 - 财政年份:2017
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
REU/RET Site: Interdisciplinary Research Experience for Undergraduates (REU) and Teachers (RET) in Materials
REU/RET 网站:材料领域本科生 (REU) 和教师 (RET) 的跨学科研究经验
- 批准号:
1460428 - 财政年份:2015
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
CAREER: Quantum Information Science with Single Defects in ZnO
职业:ZnO 单一缺陷的量子信息科学
- 批准号:
1254530 - 财政年份:2013
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
相似海外基金
Novel antiferromagnetic topological spin structures using thin-film multilayer systems and their functionalities
使用薄膜多层系统的新型反铁磁拓扑自旋结构及其功能
- 批准号:
23K13655 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Spin current propagation through epitaxial antiferromagnetic thin films
自旋电流通过外延反铁磁薄膜的传播
- 批准号:
EP/W006049/1 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Research Grant
Magnetization manipulation and antiferromagnetic dynamics driven by spin current in Weyl semimetals
外尔半金属中自旋电流驱动的磁化操纵和反铁磁动力学
- 批准号:
2210510 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
Static and dynamic spin properties in antiferromagnetic thin films and heterostructures
反铁磁薄膜和异质结构的静态和动态自旋特性
- 批准号:
2203134 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
Spin current propagation through epitaxial antiferromagnetic thin films
自旋电流通过外延反铁磁薄膜的传播
- 批准号:
EP/W006006/1 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Research Grant
Investigation of the efficiency of spin-orbit torque induced magnetization switching in Functional oxide/ ferromagnetic stack films for a new In-memory computing
研究用于新内存计算的功能氧化物/铁磁堆栈薄膜中自旋轨道扭矩引起的磁化切换的效率
- 批准号:
21K14522 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study of antiferromagnetic spin-mechatronics
反铁磁自旋机电一体化研究
- 批准号:
21K18890 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Electric-field control of antiferromagnetic spin configuration via antiferromagnetic/ferromagnetic transition and applications for memory devices
通过反铁磁/铁磁转变对反铁磁自旋配置的电场控制及其在存储器件中的应用
- 批准号:
21K14196 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Topological antiferromagnetic spin valve
拓扑反铁磁自旋阀
- 批准号:
21F21045 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Interaction of Coherent Electronic Spin Current with Antiferromagnetic Order
相干电子自旋流与反铁磁序的相互作用
- 批准号:
2003914 - 财政年份:2020
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant