Nanoscale Investigation of Microwave Dynamics in Novel Ferroelectric Microstructures
新型铁电微结构中微波动力学的纳米研究
基本信息
- 批准号:2004536
- 负责人:
- 金额:$ 40.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical Abstract: For materials with permanent electric dipoles, the interaction with an oscillating electromagnetic field leads to energy dissipation in the microwave regime. In ferroelectric materials, the effective alternating-current conductivity due to dipolar loss can be very different from the direct-current conductivity due to mobile electrons. Using a specialized microscope, the research team aims to study the local response of ferroelectric samples to microwave excitations, the fast switching of spontaneous polarizations, and the feasibility of device structures based on structural dynamics. The fundamental knowledge on the nanoscale microwave dynamics in ferroelectric microstructures may directly influence their applications in nanotechnology and lead to novel device configurations. An integrated research and education program at University of Texas at Austin is established such that students at different levels are trained to participate in fundamental material research and master advanced microscopy techniques.Technical Abstract: Bulk ferroelectrics with complex domain structures are usually not compatible with microwave applications because of the strong dielectric dispersion. The situation, however, could be different if one can take advantage of the localized dielectric loss by addressing individual domain walls and other novel polar structures, which is nontrivial because of the difficulty to perform nanoscale impedance spectroscopy. Using a microwave impedance microscope with tunable frequencies, the research team plans to study many profound scientific questions such as the local response of domain walls, vortices, and polar skyrmions to microwave excitations and the giga-Hertz polarization switching of ferroelectric thin films under strong driving fields. The collective microwave dynamics of novel polar configurations is a vivid demonstration of emergent phenomena. The results are also critical for the applications of ferroelectric microstructures in communication systems. The research activities on advanced materials and technologies are integrated with outreach to local high school students through lab experience, Saturday workshop, and summer camps. The active involvement in frontier research will influence their career path towards physics or other STEM fields.This DMR grant supports research to understand microstructures within ferroelectric thin films under strong AC driving fields with funding from the Condensed Matter Physics (CMP) Program in the Division of Materials Research of the Mathematical and Physical Sciences Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:对于具有永久电偶极子的材料,在微波区与振荡电磁场的相互作用导致能量耗散。在铁电材料中,由偶极损耗引起的有效交流电导率可能与由移动电子引起的直流电导率有很大的不同。研究小组使用专门的显微镜,旨在研究铁电样品对微波激励的局部响应,自发极化的快速切换,以及基于结构动力学的器件结构的可行性。铁电微结构中纳米尺度微波动力学的基础知识可能直接影响其在纳米技术中的应用,并导致新的器件结构。得克萨斯大学奥斯汀分校建立了一个综合研究和教育计划,以培养不同水平的学生参与基础材料研究并掌握先进的显微技术。技术摘要:具有复杂磁畴结构的块状铁电材料由于具有较强的介电色散,通常与微波应用不兼容。然而,如果人们能够通过寻址单独的磁区壁和其他新的极性结构来利用局部的介电损耗,情况可能会不同,这是不平凡的,因为执行纳米级阻抗谱的难度很大。利用频率可调的微波阻抗显微镜,该研究小组计划研究许多深刻的科学问题,如磁区壁、涡旋和极天子对微波激励的局部响应,以及铁电薄膜在强驱动场下的千兆赫兹极化开关。新型极组态的集体微波动力学是涌现现象的生动例证。研究结果对铁电微结构在通信系统中的应用也具有重要意义。先进材料和技术的研究活动与通过实验室体验、周六研讨会和夏令营向当地高中生推广相结合。积极参与前沿研究将影响他们在物理或其他STEM领域的职业道路。这项DMR拨款支持在强交流驱动磁场下了解铁电薄膜微结构的研究,资金来自数学和物理科学总监材料研究部的凝聚态物质物理(CMP)计划。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gigahertz topological valley Hall effect in nanoelectromechanical phononic crystals
- DOI:10.1038/s41928-022-00732-y
- 发表时间:2022-02
- 期刊:
- 影响因子:34.3
- 作者:Qicheng Zhang;Daehun Lee;Lu Zheng;Xuejian Ma;Shawn I. Meyer;Li He;Han Ye;Ze Gong;Bo Zhen-Bo
- 通讯作者:Qicheng Zhang;Daehun Lee;Lu Zheng;Xuejian Ma;Shawn I. Meyer;Li He;Han Ye;Ze Gong;Bo Zhen-Bo
Direct Visualization of Gigahertz Acoustic Wave Propagation in Suspended Phononic Circuits
悬浮声子电路中千兆赫声波传播的直接可视化
- DOI:10.1103/physrevapplied.16.034047
- 发表时间:2021
- 期刊:
- 影响因子:4.6
- 作者:Lee, Daehun;Liu, Qiyu;Zheng, Lu;Ma, Xuejian;Li, Huan;Li, Mo;Lai, Keji
- 通讯作者:Lai, Keji
Electrical control of surface acoustic waves
- DOI:10.1038/s41928-022-00773-3
- 发表时间:2021-01
- 期刊:
- 影响因子:34.3
- 作者:Linbo Shao;Di Zhu;M. Colangelo;Daehun Lee;N. Sinclair;Yaowen Hu;P. Rakich;K. Lai;K. Berggren-K.-Berggr
- 通讯作者:Linbo Shao;Di Zhu;M. Colangelo;Daehun Lee;N. Sinclair;Yaowen Hu;P. Rakich;K. Lai;K. Berggren-K.-Berggr
Visualization of acoustic power flow in suspended thin-film lithium niobate phononic devices
- DOI:10.1063/5.0073530
- 发表时间:2021-11-22
- 期刊:
- 影响因子:4
- 作者:Lee, Daehun;Meyer, Shawn;Lai, Keji
- 通讯作者:Lai, Keji
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keji Lai其他文献
Monolayer 1T-NbSe2 as a 2D-correlated magnetic insulator
- DOI:
DOI: 10.1126/sciadv.abi6339 - 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Mengke Liu;Joshua Leveillee;Shuangzan Lu;Jia Yu;Hyunsue Kim;Cheng Tian;Youguo Shi;Keji Lai;Chendong Zhang;Feliciano Giustino;Chih-Kang Shih - 通讯作者:
Chih-Kang Shih
Klein tunneling of gigahertz elastic waves in nanoelectromechanical metamaterials
- DOI:
10.1016/j.device.2024.100474 - 发表时间:
2024-10-18 - 期刊:
- 影响因子:
- 作者:
Daehun Lee;Yue Jiang;Xiaoru Zhang;Shahin Jahanbani;Chengyu Wen;Qicheng Zhang;A.T. Charlie Johnson;Keji Lai - 通讯作者:
Keji Lai
Integration of high-κ native oxides of gallium for two-dimensional transistors
用于二维晶体管的高κ镓原生氧化物的集成
- DOI:
10.1038/s41928-024-01286-x - 发表时间:
2024-11-15 - 期刊:
- 影响因子:40.900
- 作者:
Kongyang Yi;Wen Qin;Yamin Huang;Yao Wu;Shaopeng Feng;Qiyi Fang;Xun Cao;Ya Deng;Chao Zhu;Xilu Zou;Kah-Wee Ang;Taotao Li;Xinran Wang;Jun Lou;Keji Lai;Zhili Hu;Zhuhua Zhang;Yemin Dong;Kourosh Kalantar-Zadeh;Zheng Liu - 通讯作者:
Zheng Liu
2D edge-seeded heteroepitaxy of ultrathin high-κ dielectric CaNb2O6 for 2D field-effect transistors
用于二维场效应晶体管的超薄高κ介电 CaNb2O6 的二维边缘种子异质外延
- DOI:
10.1038/s41467-025-57773-y - 发表时间:
2025-03-16 - 期刊:
- 影响因子:15.700
- 作者:
Xiulian Fan;Jiali Yi;Bin Deng;Cong Zhou;Zejuan Zhang;Jia Yu;Weihan Li;Cheng Li;Guangcheng Wu;Xilong Zhou;Tulai Sun;Yihan Zhu;Jian Zhou;Juan Xia;Zenghui Wang;Keji Lai;Zheng Peng;Dong Li;Anlian Pan;Yu Zhou - 通讯作者:
Yu Zhou
Keji Lai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keji Lai', 18)}}的其他基金
Collaborative Research: Implementing Topologically Protected Gigahertz Acoustic Circuits
合作研究:实现拓扑保护的千兆赫声电路
- 批准号:
2221822 - 财政年份:2022
- 资助金额:
$ 40.93万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Accelerated Discovery of Artificial Multiferroics with Enhanced Magnetoelectric Coupling
合作研究:DMREF:加速发现具有增强磁电耦合的人造多铁性材料
- 批准号:
2118806 - 财政年份:2021
- 资助金额:
$ 40.93万 - 项目类别:
Standard Grant
Probing Domain Wall Dynamics in Ferroic Materials by Impedance Microscopy
通过阻抗显微镜探测铁质材料中的畴壁动力学
- 批准号:
1707372 - 财政年份:2017
- 资助金额:
$ 40.93万 - 项目类别:
Continuing Grant
EAGER: Probing High-Frequency Dynamics of Individual Domain Walls in Ferroelectrics
EAGER:探测铁电体中各个畴壁的高频动力学
- 批准号:
1649490 - 财政年份:2016
- 资助金额:
$ 40.93万 - 项目类别:
Standard Grant
相似海外基金
Further Investigation of Ocean Remote Sensing Using High-frequency and Microwave Radars
高频微波雷达海洋遥感的进一步研究
- 批准号:
RGPIN-2017-04508 - 财政年份:2022
- 资助金额:
$ 40.93万 - 项目类别:
Discovery Grants Program - Individual
Further Investigation of Ocean Remote Sensing Using High-frequency and Microwave Radars
高频微波雷达海洋遥感的进一步研究
- 批准号:
RGPIN-2017-04508 - 财政年份:2021
- 资助金额:
$ 40.93万 - 项目类别:
Discovery Grants Program - Individual
Further Investigation of Ocean Remote Sensing Using High-frequency and Microwave Radars
高频微波雷达海洋遥感的进一步研究
- 批准号:
RGPIN-2017-04508 - 财政年份:2020
- 资助金额:
$ 40.93万 - 项目类别:
Discovery Grants Program - Individual
Further Investigation of Ocean Remote Sensing Using High-frequency and Microwave Radars
高频微波雷达海洋遥感的进一步研究
- 批准号:
507962-2017 - 财政年份:2019
- 资助金额:
$ 40.93万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Further Investigation of Ocean Remote Sensing Using High-frequency and Microwave Radars
高频微波雷达海洋遥感的进一步研究
- 批准号:
RGPIN-2017-04508 - 财政年份:2019
- 资助金额:
$ 40.93万 - 项目类别:
Discovery Grants Program - Individual
Further Investigation of Ocean Remote Sensing Using High-frequency and Microwave Radars
高频微波雷达海洋遥感的进一步研究
- 批准号:
507962-2017 - 财政年份:2018
- 资助金额:
$ 40.93万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Further Investigation of Ocean Remote Sensing Using High-frequency and Microwave Radars
高频微波雷达海洋遥感的进一步研究
- 批准号:
RGPIN-2017-04508 - 财政年份:2018
- 资助金额:
$ 40.93万 - 项目类别:
Discovery Grants Program - Individual
Further Investigation of Ocean Remote Sensing Using High-frequency and Microwave Radars
高频微波雷达海洋遥感的进一步研究
- 批准号:
507962-2017 - 财政年份:2017
- 资助金额:
$ 40.93万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Further Investigation of Ocean Remote Sensing Using High-frequency and Microwave Radars
高频微波雷达海洋遥感的进一步研究
- 批准号:
RGPIN-2017-04508 - 财政年份:2017
- 资助金额:
$ 40.93万 - 项目类别:
Discovery Grants Program - Individual
Investigation of ion confinement and its loss mechanism by the microwave collective Thomson scattering
微波集体汤姆逊散射研究离子约束及其损失机制
- 批准号:
16H04620 - 财政年份:2016
- 资助金额:
$ 40.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)