EAGER: Probing High-Frequency Dynamics of Individual Domain Walls in Ferroelectrics

EAGER:探测铁电体中各个畴壁的高频动力学

基本信息

  • 批准号:
    1649490
  • 负责人:
  • 金额:
    $ 3.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-15 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

Non-technical Abstract:Ferroelectrics, the electric counterpart of magnets, are usually self-divided into many domains. The boundaries separating different domains, known as the domain walls, may vibrate and absorb microwave power in ferroelectric-based devices. To date, very little is known about the high-frequency motion of individual ferroelectric domain walls due to various technical challenges. Using a special microscope, the research team aims to visualize the domain walls by their ability to absorb the electromagnetic energy. The knowledge obtained by this research is crucial for future electronic applications of these materials. An integrated research and education program at University of Texas at Austin is established such that graduate and undergraduate students are trained to explore fundamental material physics and master advanced microscopy techniques.Technical Abstract: Ferroelectric domain walls with widths of several nanometers usually exhibit properties distinct from that of the domains, which may dominate the electrodynamic responses of the entire system. For instance, it is believed that the walls, rather than the domains, play the key role in the high-frequency dielectric dispersion. Due to the lack of sensitivity in commercial impedance analyzers, however, it has been difficult to separate the contributions of domains and domain walls from conventional bulk measurements. Using a novel broadband impedance microscopy with nanoscale resolutions, this research aims to locally probe the high-frequency response of ferroelectric domain walls at variable temperatures. Both neutral and charged domain walls in proper and improper ferroelectrics are under investigation. The work is significant because it is the very first experimental study on ferroelectric dynamics down to the nanometer length scale and it helps to resolve the controversial microscopic picture of the collective domain wall vibrations. The understanding of the intrinsic dielectric dispersion of ferroelectrics in the microwave regime is also critical for their applications in communication systems. The new approach of nanoscale dielectric spectroscopy proposed in this EAGER project may lead to transformative results for modern condensed matter physics research.
非技术摘要:铁电材料,磁体的电学对应物,通常被自划分为许多区域。在基于铁电的器件中,分隔不同磁区的边界,称为磁区壁,可能会振动并吸收微波功率。到目前为止,由于各种技术挑战,人们对单个铁电磁畴壁的高频运动知之甚少。使用一种特殊的显微镜,研究小组的目标是通过磁场壁吸收电磁能量的能力来可视化它们。通过这项研究获得的知识对这些材料未来的电子应用至关重要。德克萨斯大学奥斯汀分校建立了一个综合的研究和教育项目,以培养研究生和本科生探索基础材料物理并掌握先进的显微技术。技术摘要:宽度为几纳米的铁电磁区壁通常表现出与磁区不同的特性,这可能主导整个系统的电动力学响应。例如,人们认为,在高频介电色散中起关键作用的是壁,而不是磁区。然而,由于商用阻抗分析仪缺乏灵敏度,很难将磁区和磁区壁的贡献与传统的整体测量分开。利用一种新型的纳米尺度宽带阻抗显微镜,本研究旨在局部探测变温条件下铁电磁畴壁的高频响应。适当的和不适当的铁电体中的中性和带电的磁畴壁都在调查中。这项工作意义重大,因为它是第一次在纳米尺度上对铁电动力学进行实验研究,并有助于解决集体磁畴壁振动这一有争议的微观图像。了解铁电材料在微波区的本征介电色散对于它们在通信系统中的应用也是至关重要的。在这个迫切的项目中提出的纳米尺度介电光谱的新方法可能会为现代凝聚态物理的研究带来变革性的结果。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Keji Lai其他文献

Monolayer 1T-NbSe2 as a 2D-correlated magnetic insulator
  • DOI:
    DOI: 10.1126/sciadv.abi6339
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Mengke Liu;Joshua Leveillee;Shuangzan Lu;Jia Yu;Hyunsue Kim;Cheng Tian;Youguo Shi;Keji Lai;Chendong Zhang;Feliciano Giustino;Chih-Kang Shih
  • 通讯作者:
    Chih-Kang Shih
Klein tunneling of gigahertz elastic waves in nanoelectromechanical metamaterials
  • DOI:
    10.1016/j.device.2024.100474
  • 发表时间:
    2024-10-18
  • 期刊:
  • 影响因子:
  • 作者:
    Daehun Lee;Yue Jiang;Xiaoru Zhang;Shahin Jahanbani;Chengyu Wen;Qicheng Zhang;A.T. Charlie Johnson;Keji Lai
  • 通讯作者:
    Keji Lai
Integration of high-κ native oxides of gallium for two-dimensional transistors
用于二维晶体管的高κ镓原生氧化物的集成
  • DOI:
    10.1038/s41928-024-01286-x
  • 发表时间:
    2024-11-15
  • 期刊:
  • 影响因子:
    40.900
  • 作者:
    Kongyang Yi;Wen Qin;Yamin Huang;Yao Wu;Shaopeng Feng;Qiyi Fang;Xun Cao;Ya Deng;Chao Zhu;Xilu Zou;Kah-Wee Ang;Taotao Li;Xinran Wang;Jun Lou;Keji Lai;Zhili Hu;Zhuhua Zhang;Yemin Dong;Kourosh Kalantar-Zadeh;Zheng Liu
  • 通讯作者:
    Zheng Liu
2D edge-seeded heteroepitaxy of ultrathin high-κ dielectric CaNb2O6 for 2D field-effect transistors
用于二维场效应晶体管的超薄高κ介电 CaNb2O6 的二维边缘种子异质外延
  • DOI:
    10.1038/s41467-025-57773-y
  • 发表时间:
    2025-03-16
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Xiulian Fan;Jiali Yi;Bin Deng;Cong Zhou;Zejuan Zhang;Jia Yu;Weihan Li;Cheng Li;Guangcheng Wu;Xilong Zhou;Tulai Sun;Yihan Zhu;Jian Zhou;Juan Xia;Zenghui Wang;Keji Lai;Zheng Peng;Dong Li;Anlian Pan;Yu Zhou
  • 通讯作者:
    Yu Zhou

Keji Lai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Keji Lai', 18)}}的其他基金

Collaborative Research: Implementing Topologically Protected Gigahertz Acoustic Circuits
合作研究:实现拓扑保护的千兆赫声电路
  • 批准号:
    2221822
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Accelerated Discovery of Artificial Multiferroics with Enhanced Magnetoelectric Coupling
合作研究:DMREF:加速发现具有增强磁电耦合的人造多铁性材料
  • 批准号:
    2118806
  • 财政年份:
    2021
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Nanoscale Investigation of Microwave Dynamics in Novel Ferroelectric Microstructures
新型铁电微结构中微波动力学的纳米研究
  • 批准号:
    2004536
  • 财政年份:
    2020
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
Probing Domain Wall Dynamics in Ferroic Materials by Impedance Microscopy
通过阻抗显微镜探测铁质材料中的畴壁动力学
  • 批准号:
    1707372
  • 财政年份:
    2017
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Probing matter-antimatter asymmetry with the muon electric dipole moment
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    30 万元
  • 项目类别:
Probing quark gluon plasma by heavy quarks in heavy-ion collisions
  • 批准号:
    11805087
  • 批准年份:
    2018
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Cellular FM-radios: seeing, probing, and perturbing single-cell protein activity dynamics in biological systems with frequency-barcoded spatiotemporal signaling circuits
细胞调频无线电:利用频率条形码时空信号电路观察、探测和扰动生物系统中的单细胞蛋白质活性动态
  • 批准号:
    10685132
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
Phase-Sensitive Chiral Sum Frequency Generation Vibrational Spectroscopy for Probing Protein Hydration at Aqueous Interfaces
用于探测水界面蛋白质水合的相敏手性和频发生振动光谱
  • 批准号:
    2108690
  • 财政年份:
    2021
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
Probing Coupled Electronic and Vibrational Motions in Ultrafast Proton Transfer Processes with Mixed-Frequency Multidimensional Vibronic and Soft X-ray Spectroscopies
利用混合频率多维电子振动和软 X 射线光谱探测超快质子传递过程中的耦合电子和振动运动
  • 批准号:
    1856413
  • 财政年份:
    2019
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Probing Low Frequency Vibrational Modes in Molecular Crystals and Developing Terahertz Spectroscopic Polarimetry
探测分子晶体中的低频振动模式并开发太赫兹光谱偏振测定法
  • 批准号:
    1465085
  • 财政年份:
    2015
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Multi-array, multi-frequency probing of the Earth's heterogeneity
地球异质性的多阵列、多频率探测
  • 批准号:
    DP130101473
  • 财政年份:
    2013
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Projects
Direct probing of low frequency motions in solution phase chemical dynamics
直接探测溶液相化学动力学中的低频运动
  • 批准号:
    0211894
  • 财政年份:
    2002
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Micro-probing system of coherent phenomena in THz frequency region
太赫兹频段相干现象微探测系统
  • 批准号:
    12554010
  • 财政年份:
    2000
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Very Low Frequency Probing of the Magnetosphere From Palmer Station, Antarctica
南极洲帕尔默站对磁层的甚低频探测
  • 批准号:
    7924600
  • 财政年份:
    1980
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
Very-Low-Frequency Probing of the Magnetosphere From Vostok Station, Antarctica
从南极洲沃斯托克站对磁层进行极低频探测
  • 批准号:
    7818316
  • 财政年份:
    1978
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
Very-Low-Frequency Probing of the Magnetosphere From Palmer Station, Antarctica
南极洲帕尔默站对磁层的甚低频探测
  • 批准号:
    7682042
  • 财政年份:
    1977
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了