Collaborative Research: DMREF: Accelerated Discovery of Artificial Multiferroics with Enhanced Magnetoelectric Coupling

合作研究:DMREF:加速发现具有增强磁电耦合的人造多铁性材料

基本信息

  • 批准号:
    2118806
  • 负责人:
  • 金额:
    $ 90万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Non-technical Description: Developing new materials lays the foundation for technology innovations. When one material is integrated with another, new properties and functionalities can emerge in the resulting heterostructure. The choice of building blocks, however, is a challenge that is best addressed with a collaborative approach combining computational methods, material synthesis, and a broad range of characterization methods. This research will tackle a long-standing material science challenge: how to create multiferroics materials that combine long-range electric and magnetic orders. Artificial multiferroics consisting of layered magnetic two-dimensional (2D) materials interfaced with ferroelectric 2D or oxides materials will be investigated. Because the interface between the electrically ordered (ferroelectric) layer and magnetically ordered (e.g., ferromagnetic) layer is atomically flat, an enhanced coupling between the two can be used to effectively switch the magnetic order via the electrical control. These new materials can lead to technological innovations, e.g., memory devices that are compact and power-saving. Given the large number of possible choices of 2D materials, machine-learning based data mining will lead the experimental effort in synthesis and characterization of new multiferroic heterostructures in this research. Technical Description: Multiferroics are materials that simultaneously exhibit long-range electric and magnetic orders. The coupling between the electrical and magnetic polarizations, i.e., the magnetoelectric (ME) effect, can be exploited to develop low-power nanoelectronics based on voltage-control of magnetism. This research will accelerate the discovery of a new type of artificial multiferroics with enhanced magnetoelectric coupling by integrating two-dimensional (2D) van der Waals (vdW) magnets with vdW or oxide ferroelectrics. The ME effect in single-phase materials is typically weak because ferroelectricity and magnetism come from different electronic orbitals. ME coupling in synthesized composites, on the other hand, occurs exclusively at inter-materials boundaries, with small interface/bulk ratios and limited material choices. The hypothesis that a significantly enhanced ME effect can be achieved in heterostructures composed of a magnetic vdW layer and a ferroelectric vdW or oxide material will drive this integrated research activity. With a large number of established 2D magnetic and ferroelectric materials, the possible combinations of heterostructures can reach an order of 10,000 to 100,000. A computation-led approach is thus critical to accelerate the discovery of optimal artificial multiferroics with an enhanced ME effect. In this project, the predictions of new multiferroic heterostructures will be validated by materials synthesis and characterization experiments. In addition to the research efforts, this award will support the training and education of graduate and undergraduate students as the next-generation scientific and engineering workforce. This project will also develop contents and posts for social media to introduce concepts and developments of multiferroic quantum materials to engage the general public.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:开发新材料为技术创新奠定基础。当一种材料与另一种材料集成时,新的性质和功能可以在所产生的异质结构中出现。然而,构建块的选择是一个最好的挑战,通过结合计算方法、材料合成和广泛的表征方法的协作方法来解决。这项研究将解决一个长期存在的材料科学挑战:如何创造出结合了长程电磁有序的多铁性材料。由层状磁性二维(2D)材料与铁电2D或氧化物材料界面组成的人工多铁体将被研究。因为电有序(铁电)层和磁有序(例如,铁磁)层之间的界面在原子上是平的,所以两者之间的增强耦合可用于通过电控制有效地切换磁序。这些新材料可以带来技术创新,例如紧凑和省电的存储设备。考虑到2D材料的大量可能选择,基于机器学习的数据挖掘将在本研究中引领合成和表征新的多铁性异质结构的实验努力。技术说明:多铁性是一种同时表现出长程电序和磁序的材料。电极化和磁极化之间的耦合,即磁电(ME)效应,可以用来开发基于磁电压控制的低功率纳米电子学。这项研究将通过将二维(2D)范德华(VDW)磁体与VDW或氧化物铁电材料相结合,加速发现具有增强磁电耦合的新型人造多铁材料。在单相材料中,由于铁电性和磁性来自不同的电子轨道,ME效应通常很弱。另一方面,合成复合材料中的ME耦合只发生在材料间的边界上,界面/体积比小,材料选择有限。在由磁性VDW层和铁电VDW或氧化物材料组成的异质结构中可以实现显著增强的ME效应的假设将推动这一综合研究活动。随着大量已建立的2D磁性和铁电材料的出现,异质结构的可能组合可以达到10,000到10,000个数量级。因此,以计算为导向的方法对于加速发现具有增强ME效应的最佳人工多铁化合物至关重要。在这个项目中,新的多铁异质结构的预测将通过材料合成和表征实验来验证。除了研究工作外,该奖项还将支持研究生和本科生作为下一代科学和工程劳动力的培训和教育。该项目还将开发社交媒体的内容和帖子,介绍多铁量子材料的概念和发展,以吸引公众。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spontaneous polarization in van der Waals materials: Two-dimensional ferroelectrics and device applications
  • DOI:
    10.1063/5.0116445
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    K. Lai
  • 通讯作者:
    K. Lai
Anisotropic Excitons Reveal Local Spin Chain Directions in a van der Waals Antiferromagnet
  • DOI:
    10.1002/adma.202206585
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Dong Seob Kim;Di Huang;Chunhao Guo;Kejun Li;D. Rocca;Frank Y. Gao;Jeongheon Choe;David Lujan;Ting-Hsuan Wu;Kung‐Hsuan Lin;E. Baldini;Li Yang;Shivani Sharma;R. Kalaivanan;R. Sankar;Shang-Fan Lee;Y. Ping;Xiaoqin Li
  • 通讯作者:
    Dong Seob Kim;Di Huang;Chunhao Guo;Kejun Li;D. Rocca;Frank Y. Gao;Jeongheon Choe;David Lujan;Ting-Hsuan Wu;Kung‐Hsuan Lin;E. Baldini;Li Yang;Shivani Sharma;R. Kalaivanan;R. Sankar;Shang-Fan Lee;Y. Ping;Xiaoqin Li
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Keji Lai其他文献

Monolayer 1T-NbSe2 as a 2D-correlated magnetic insulator
  • DOI:
    DOI: 10.1126/sciadv.abi6339
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Mengke Liu;Joshua Leveillee;Shuangzan Lu;Jia Yu;Hyunsue Kim;Cheng Tian;Youguo Shi;Keji Lai;Chendong Zhang;Feliciano Giustino;Chih-Kang Shih
  • 通讯作者:
    Chih-Kang Shih
Klein tunneling of gigahertz elastic waves in nanoelectromechanical metamaterials
  • DOI:
    10.1016/j.device.2024.100474
  • 发表时间:
    2024-10-18
  • 期刊:
  • 影响因子:
  • 作者:
    Daehun Lee;Yue Jiang;Xiaoru Zhang;Shahin Jahanbani;Chengyu Wen;Qicheng Zhang;A.T. Charlie Johnson;Keji Lai
  • 通讯作者:
    Keji Lai
Integration of high-κ native oxides of gallium for two-dimensional transistors
用于二维晶体管的高κ镓原生氧化物的集成
  • DOI:
    10.1038/s41928-024-01286-x
  • 发表时间:
    2024-11-15
  • 期刊:
  • 影响因子:
    40.900
  • 作者:
    Kongyang Yi;Wen Qin;Yamin Huang;Yao Wu;Shaopeng Feng;Qiyi Fang;Xun Cao;Ya Deng;Chao Zhu;Xilu Zou;Kah-Wee Ang;Taotao Li;Xinran Wang;Jun Lou;Keji Lai;Zhili Hu;Zhuhua Zhang;Yemin Dong;Kourosh Kalantar-Zadeh;Zheng Liu
  • 通讯作者:
    Zheng Liu
2D edge-seeded heteroepitaxy of ultrathin high-κ dielectric CaNb2O6 for 2D field-effect transistors
用于二维场效应晶体管的超薄高κ介电 CaNb2O6 的二维边缘种子异质外延
  • DOI:
    10.1038/s41467-025-57773-y
  • 发表时间:
    2025-03-16
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Xiulian Fan;Jiali Yi;Bin Deng;Cong Zhou;Zejuan Zhang;Jia Yu;Weihan Li;Cheng Li;Guangcheng Wu;Xilong Zhou;Tulai Sun;Yihan Zhu;Jian Zhou;Juan Xia;Zenghui Wang;Keji Lai;Zheng Peng;Dong Li;Anlian Pan;Yu Zhou
  • 通讯作者:
    Yu Zhou

Keji Lai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Keji Lai', 18)}}的其他基金

Collaborative Research: Implementing Topologically Protected Gigahertz Acoustic Circuits
合作研究:实现拓扑保护的千兆赫声电路
  • 批准号:
    2221822
  • 财政年份:
    2022
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Nanoscale Investigation of Microwave Dynamics in Novel Ferroelectric Microstructures
新型铁电微结构中微波动力学的纳米研究
  • 批准号:
    2004536
  • 财政年份:
    2020
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Probing Domain Wall Dynamics in Ferroic Materials by Impedance Microscopy
通过阻抗显微镜探测铁质材料中的畴壁动力学
  • 批准号:
    1707372
  • 财政年份:
    2017
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
EAGER: Probing High-Frequency Dynamics of Individual Domain Walls in Ferroelectrics
EAGER:探测铁电体中各个畴壁的高频动力学
  • 批准号:
    1649490
  • 财政年份:
    2016
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
  • 批准号:
    2325392
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了