Tuning Nanostructured Morphology in Superhard Metal Borides
调整超硬金属硼化物的纳米结构形态
基本信息
- 批准号:2004616
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARY:Mechanical hardness is an important property used to determine the applications of materials in the machining and manufacturing industries. Due to the extensive use of hard materials as cutting tools and abrasives, the demand for superhard materials has been steadily increasing. The best-known superhard material – diamond – is not effective at cutting and drilling steel due to its poor thermal stability in air and its tendency to react with the iron in the steel it is trying to cut. Therefore, there is great interest in finding alternatives to traditional superhard materials. These are needed in the construction, automotive, and other industries to replace costly and low performing traditional hard materials like tungsten carbide. To address these issues, the Principal Investigators (PIs) are designing a new generation of superhard materials that will provide greatly increased hardness and the ability to cut steels and other materials at lower cost. Inspired by the unique properties of natural diamond, the Principal Investigators have focused on creating networks with similar properties in other compounds, focusing on mixtures of electron-rich metals and boron. The novel superhard materials are synthesized at ambient pressure and characterization will be conducted to understand the correlation between material structure and hardness. The educational efforts of the PIs, which address the needs of students ranging from elementary school to college undergraduates, include course development, teacher workshops for elementary, middle, and high schools in the greater Los Angeles area, and school outreach visits. Workforce development occurs through the training of graduate students, who also assist with outreach programs and mentor UCLA undergraduate students through research. This project is supported by the Solid State and Materials Chemistry program within the Division of Materials Research.TECHNICAL SUMMARY:Hardness is a physical phenomenon dependent on both the chemical bond strength and grain structure of a material. An understanding of how to design new superhard materials thus requires sufficient mechanistic insight and control of both bonding and grain morphology. To address this challenge, the Principal Investigators (PIs) are combining the synthesis of a wide range of transition metal boride systems with high-pressure studies to obtain lattice-specific information about plastic deformations in a broad range of bulk and nanoscale materials. These metal boride structures consist of high valence electron density metals, combined with multiple short boron-boron bonds, providing a highly covalent bonding network that is resistant to slip and dislocations, combined with high electrostatic repulsion that resists bond compression. The goal of the proposed work, supported by the Solid State and Materials Chemistry program within the Division of Materials Research, is to synthetically control both grain size and morphology. In bulk materials, this is being accomplished through the decomposition of metastable dodecaboride phases in the WB4 system and through precipitation of secondary phases in the ReB2 system. Additionally, molten salt methods are being used to develop nano grain-sized metal borides such as nano-ReB2 and nano-WB4. These synthetic approaches thus aim to enhance extrinsic hardness in both bulk and nano-sized materials. Materials are being analyzed through Vickers hardness testing and high-pressure experiments in diamond anvil cells. With an understanding of the coupled effects of bonding and grain morphology, the research team aims to systematically tune nanostructured materials and advance the next generation of superhard metal borides. The broader impacts of the work lie in workforce development through the training of graduate students, in the extensive outreach efforts of the PIs, which address the needs of students ranging from elementary school to college undergraduates, and in the significant potential for impact on the commercial cutting, drilling and machining industries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性总结:机械硬度是用于确定材料在机械加工和制造业中的应用的重要特性。由于硬质材料作为切削工具和磨料的广泛使用,对超硬材料的需求一直在稳步增长。最著名的超硬材料-金刚石-由于其在空气中的热稳定性差,并且易于与其试图切割的钢中的铁反应,因此在切割和钻孔钢时无效。因此,人们对寻找传统超硬材料的替代品非常感兴趣。建筑、汽车和其他行业需要这些材料来取代昂贵且性能低下的传统硬质材料,如碳化钨。为了解决这些问题,主要研究人员(PI)正在设计新一代超硬材料,这些材料将大大提高硬度,并能够以较低的成本切割钢材和其他材料。受天然金刚石独特性质的启发,主要研究人员专注于在其他化合物中创建具有类似性质的网络,重点关注富电子金属和硼的混合物。在环境压力下合成新型超硬材料,并进行表征以了解材料结构与硬度之间的相关性。PI的教育工作,解决学生的需求,从小学到大学本科生,包括课程开发,教师研讨会的小学,初中和高中在大洛杉矶地区,和学校外展访问。劳动力发展通过研究生的培训发生,他们还通过研究协助推广计划和指导UCLA的本科生。 该项目由材料研究部的固态和材料化学项目支持。技术概要:硬度是一种物理现象,取决于材料的化学键强度和晶粒结构。因此,理解如何设计新的超硬材料需要足够的机械洞察力和控制键合和晶粒形态。为了应对这一挑战,主要研究人员(PI)正在将各种过渡金属硼化物系统的合成与高压研究相结合,以获得有关各种散装和纳米级材料塑性变形的晶格特定信息。这些金属硼化物结构由高价电子密度金属组成,与多个短硼-硼键结合,提供抗滑移和位错的高度共价键合网络,与抵抗键压缩的高静电排斥结合。拟议工作的目标,由材料研究部内的固态和材料化学计划的支持,是综合控制晶粒尺寸和形态。在散装材料中,这是通过WB 4系统中亚稳十二硼化物相的分解和ReB 2系统中第二相的沉淀来实现的。此外,熔盐方法被用于开发纳米晶粒尺寸的金属硼化物,如纳米ReB 2和纳米WB 4。因此,这些合成方法的目的是提高体材料和纳米材料的外在硬度。通过维氏硬度测试和金刚石压砧单元中的高压实验对材料进行分析。通过了解结合和晶粒形态的耦合效应,研究团队的目标是系统地调整纳米结构材料并推进下一代超硬金属硼化物。这项工作的更广泛影响在于通过培训研究生来发展劳动力,在PI的广泛推广工作中,解决了从小学到大学本科生的学生的需求,以及对商业切割的重大潜在影响,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhanced Hardening Effects on Molybdenum-Doped WB 2 and WB 2 –SiC/B 4 C Composites
增强钼掺杂 WB 2 和 WB 2 → SiC/B 4 C 复合材料的硬化效果
- DOI:10.1021/acs.chemmater.2c00386
- 发表时间:2022
- 期刊:
- 影响因子:8.6
- 作者:Pangilinan, Lisa E.;Hu, Shanlin;Turner, Christopher L.;Yan, Jinyuan;Kavner, Abby;Mohammadi, Reza;Tolbert, Sarah H.;Kaner, Richard B.
- 通讯作者:Kaner, Richard B.
Hardening Effects in Superhard Transition-Metal Borides
- DOI:10.1021/accountsmr.1c00192
- 发表时间:2021-12-30
- 期刊:
- 影响因子:14.6
- 作者:Pangilinan, Lisa E.;Hu, Shanlin;Kaner, Richard B.
- 通讯作者:Kaner, Richard B.
Exploring the hardness and high-pressure behavior of osmium and ruthenium-doped rhenium diboride solid solutions
- DOI:10.1063/5.0135620
- 发表时间:2023-03
- 期刊:
- 影响因子:6.1
- 作者:Shanling Hu;Lisa E. Pangilinan;Christopher L. Turner;R. Mohammadi;A. Kavner;R. Kaner;S. Tolbert
- 通讯作者:Shanling Hu;Lisa E. Pangilinan;Christopher L. Turner;R. Mohammadi;A. Kavner;R. Kaner;S. Tolbert
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Kaner其他文献
Richard Kaner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Kaner', 18)}}的其他基金
Bond Strengthening and Grain Size Refinement in Superhard Metal Borides
超硬金属硼化物中的键强化和晶粒尺寸细化
- 批准号:
2312942 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Designing New Superhard Metal Borides
设计新型超硬金属硼化物
- 批准号:
1506860 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
SusChEM: High Throughput Screening of Anti-fouling and Anti-bacterial Coating Films
SusChEM:防污抗菌涂膜的高通量筛选
- 批准号:
1337065 - 财政年份:2013
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
The Synthesis and Characterization of Ultra-Incompressible, Superhard Borides
超不可压缩、超硬硼化物的合成和表征
- 批准号:
0805357 - 财政年份:2008
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
NIRT: Engineering Conducting Polymer Nanofibers for Advanced Applications
NIRT:用于高级应用的工程导电聚合物纳米纤维
- 批准号:
0507294 - 财政年份:2005
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Metathesis Routes to Ultra-Incompressible Borides, High Surface Area Nitrides and Intermetallics
超不可压缩硼化物、高表面积氮化物和金属间化合物的复分解路线
- 批准号:
0453121 - 财政年份:2005
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Metathesis Routes to Nitrides and Nanotubes
氮化物和纳米管的复分解途径
- 批准号:
0073581 - 财政年份:2000
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Solid-State Metathesis Reactions Under Pressure
压力下的固态复分解反应
- 批准号:
9704964 - 财政年份:1997
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Rapid Solid-State Synthesis of Materials
材料的快速固态合成
- 批准号:
9315914 - 财政年份:1994
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
相似国自然基金
面向超高性能混凝土的再生纳米材料制备与性能研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
可控靶向活化I型纳米光敏剂的构筑及其肿瘤深层光诊疗研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
二十二碳六烯酸载体胰岛素纳米微乳的合成及其经鼻给药对术后认知障碍的影响机制研究
- 批准号:JCZRLH202501001
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
纳米离子探针原位分析鄂西地区二叠系孤峰组与梁山组页岩气差异性富集机理
- 批准号:JCZRLH202501173
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向电子自旋调控的不对称纳米电催化剂的设计与合成
- 批准号:JCZRYB202500489
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
携带CD47纳米抗体工程菌OMV-CD47nb与ICD肿瘤细胞仿生杂交膜纳米疫苗的构建及其抗癌效应研究初探
- 批准号:JCZRYB202500618
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
糖化雷公藤甲素纳米药物靶向淋巴管新生抑制肾脏纤维化的机制研究
- 批准号:JCZRYB202500768
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
仿苍耳倒钩样结构复合硒纳米颗粒功能化钛表面诱导软组织封闭的应用基础研究
- 批准号:JCZRYB202500815
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
电组装纤维素纳米晶/nano-ZnO有序结构凝胶的可控制备及其感染性创面修复的应用研究
- 批准号:JCZRYB202501279
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于聚乙二醇修饰的水杨酸纳米药物CEST探针在脑胶质瘤精准诊疗一体化中的实验研究
- 批准号:JCZRLH202500812
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
- 批准号:
2337506 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Manufacturing Nanostructured Metallic Materials via 3D Printed Polymers
通过 3D 打印聚合物制造纳米结构金属材料
- 批准号:
DE240100917 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Discovery Early Career Researcher Award
SBIR Phase I: All-Semiconductor Nanostructured Lenses for High-Tech Industries
SBIR 第一阶段:用于高科技行业的全半导体纳米结构镜头
- 批准号:
2335588 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:使用分层纳米结构动力系统进行二维波动工程
- 批准号:
2337507 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Design theory-based nanostructured leaf-vein networks for selective VOC sensing
基于理论的纳米结构叶脉网络用于选择性 VOC 传感
- 批准号:
EP/W022451/1 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Research Grant
Nanostructured Silicon-Based Wearable and Implantable Biosensors
纳米结构硅基可穿戴和植入式生物传感器
- 批准号:
FL220100185 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Australian Laureate Fellowships
Strain-Hardening Mechanisms in Ferrous Bulk Nanostructured Metals: Towards Managing Ultra-high Strength and Large Ductility
黑色金属块体纳米结构金属的应变硬化机制:实现超高强度和大延展性
- 批准号:
23H00234 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Parametric design software for nanostructured CRISPR payloads
用于纳米结构 CRISPR 有效负载的参数化设计软件
- 批准号:
10602823 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Design theory-based nanostructured leaf-vein networks for selective VOC sensing
基于理论的纳米结构叶脉网络用于选择性 VOC 传感
- 批准号:
EP/W024284/1 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Research Grant
Development of Nanostructured Scaffolds for Stem Cell Culture to Directly Regulate Cellular Functions via Natural Polysaccharide Nanofibers
开发用于干细胞培养的纳米结构支架,通过天然多糖纳米纤维直接调节细胞功能
- 批准号:
23H00345 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Scientific Research (A)