Bond Strengthening and Grain Size Refinement in Superhard Metal Borides

超硬金属硼化物中的键强化和晶粒尺寸细化

基本信息

  • 批准号:
    2312942
  • 负责人:
  • 金额:
    $ 64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Non-technical SummaryThe continuous creation and development of tools through the tuning of materials’ properties has been a cornerstone of much of the development seen in human societies. High mechanical hardness is a very desirable property for materials used in industrial settings for machining and cutting as it dramatically reduces wear and therefore turnover rate of machining tools. The industry standard superhard material is diamond, the hardest material currently known. The issue that arises with diamond, however, is that not only does it have an expensive high pressure, high temperate synthesis, but it is limited in its applications. This is because it is thermally unstable in air and when used to cut iron containing materials, diamond breaks down to form iron carbides. These both result in a high turnover rate for diamond tools, and an inability to be used with common iron containing materials, like steel. Cheaper alternatives such as tungsten carbide (WC) have an easier, low-cost synthesis, but lack the extremely high hardness values of diamond and therefore have high turnover rates and are less effective. With this project, supported by the Solid State and Materials Chemistry program and the Ceramics program, both in NSF’s Division of Materials Research, the principal investigators design and create superhard materials that approach the high hardness seen in diamond, while replicating the low cost, ambient pressure synthesis found in WC. These superhard materials made from boron not only lower the cost of synthesis, but they improve the lifetime of the tools that can be created and therefore, lower the amount of waste generated in industrial machining. Additionally, the metallic nature of these transition metal borides enables the use of high precision cutting and shaping instruments like plasma cutting, which is currently not usable with electrically insulating materials like diamond, which additionally reduces cost and waste in the formation of these tools. Beyond this research, the principal investigators undertake educational outreach in the greater Los Angeles area. This includes developing lessons and experiments for K-12 schools and presenting them to teachers, along with speaking to students in grade school about not just science, but higher education as a whole. Graduate students who work on this project also gain valuable skills through both the research they conduct as well as through the mentorship and outreach programs they participate in alongside their mentors. Technical SummaryHardness is a mechanical property that is defined by a material’s ability to resist irreversible shape change, known as plastic deformation. The hardness of a given material is dependent on several different materials’ properties, but they can overall be grouped into two categories: intrinsic bonding effects and grain boundary effects. These two contributors to hardness are not mutually exclusive and therefore can be optimized separately and combined to dramatically improve the hardness of a material. This project, with support from the Solid State and Materials Chemistry program and the Ceramics program, both in NSF’s Division of Materials Research, uses the described two-pronged approach towards superhard materials design and combines the synthesis of transition metal boride systems with high-pressure studies to obtain information about the internal deformation mechanisms of bulk and nanocrystalline materials. The research groups at UC Los Angeles study how small element doping into the boron sites of the metal borides affects the bonding. Using systems of di- and tetra- borides with varying amounts of carbon in them, the principal investigators investigate the different carbon bonding regimes, and their impact on hardness. Additionally, synthetic routes for the formation of nanostructured metal borides are explored. The principal investigators utilize new synthetic routes to create nanocrystalline forms of known superhard metal borides such as ReB2, WB2 and WB4 to further increase the hardness of these materials by maximizing the number of grain boundaries which can impede plastic deformation. These nanocrystalline materials also allow for new analytical techniques which are not possible for bulk materials such as Rietveld texture analysis. These two approaches to hardening metal borides can then be combined to create nanocrystalline solid solutions which benefit from both the improved bonding effects and grain boundary effects. The broader impacts of the project are multifaceted and include extensive outreach conducted by the principal investigators aimed at grade school children, the training of both graduate and undergraduate students in their Ph.D. studies and undergraduate research opportunities, respectively, and the development of novel superhard materials which have the potential to improve the quality of industrial manufacturing and machining tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性概述通过调整材料的性质来不断创造和开发工具,已经成为人类社会大部分发展的基石。高机械硬度对于在工业环境中用于机加工和切削的材料是非常理想的性质,因为它显著降低了磨损并因此降低了机加工工具的周转率。工业标准的超硬材料是金刚石,目前已知的最硬的材料。然而,金刚石出现的问题是,它不仅具有昂贵的高压、高温合成,而且其应用受到限制。这是因为它在空气中是热不稳定的,当用于切割含铁材料时,金刚石分解形成碳化铁。这两者都导致金刚石工具的高周转率,并且不能与普通的含铁材料(如钢)一起使用。 更便宜的替代品,如碳化钨(WC)具有更容易,低成本的合成,但缺乏金刚石的极高硬度值,因此具有高周转率,效率较低。通过这个项目,由固体和材料化学计划和陶瓷计划的支持,无论是在NSF的材料研究部门,主要研究人员设计和创造超硬材料,接近金刚石中看到的高硬度,同时复制低成本,在WC中发现的环境压力合成。这些由硼制成的超硬材料不仅降低了合成成本,而且提高了可以制造的工具的寿命,因此减少了工业加工中产生的废物量。此外,这些过渡金属硼化物的金属性质使得能够使用高精度切割和成形仪器,如等离子切割,其目前不能用于电绝缘材料,如金刚石,这另外降低了这些工具形成中的成本和浪费。除了这项研究,主要研究人员在大洛杉矶地区进行教育推广。这包括为K-12学校开发课程和实验,并将其呈现给教师,沿着向小学生讲述不仅仅是科学,而是整个高等教育。谁在这个项目上工作的研究生也获得了宝贵的技能,通过他们进行的研究,以及通过他们一起参加他们的导师导师和推广计划。技术概述硬度是一种机械性能,由材料抵抗不可逆形状变化(称为塑性变形)的能力定义。给定材料的硬度取决于几种不同材料的性质,但它们总体上可以分为两类:内在结合效应和晶界效应。 这两种硬度因素并不相互排斥,因此可以单独优化,并结合起来,以显着提高材料的硬度。 该项目得到了NSF材料研究部的固态和材料化学计划以及陶瓷计划的支持,采用了所述的双管齐下的方法进行超硬材料设计,并将过渡金属硼化物系统的合成与高压研究相结合,以获得有关大块和纳米晶材料内部变形机制的信息。加州大学洛杉矶分校的研究小组研究了在金属硼化物的硼位置掺杂少量元素如何影响键合。使用系统的二和四硼化物与不同量的碳在其中,主要研究人员调查不同的碳键合制度,以及它们对硬度的影响。此外,纳米结构的金属硼化物的形成的合成路线进行了探索。主要研究人员利用新的合成路线来创建已知超硬金属硼化物的纳米晶形式,如ReB 2,WB 2和WB 4,以通过最大化可以阻止塑性变形的晶界数量来进一步增加这些材料的硬度。这些纳米晶材料还允许新的分析技术,这是不可能的散装材料,如里特维尔德纹理分析。这两种硬化金属硼化物的方法可以结合起来,产生纳米晶固溶体,其受益于改善的结合效果和晶界效应。该项目的广泛影响是多方面的,包括主要研究人员针对小学生进行的广泛宣传,对研究生和本科生进行博士学位培训。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Kaner其他文献

Richard Kaner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Kaner', 18)}}的其他基金

Tuning Nanostructured Morphology in Superhard Metal Borides
调整超硬金属硼化物的纳米结构形态
  • 批准号:
    2004616
  • 财政年份:
    2020
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant
Designing New Superhard Metal Borides
设计新型超硬金属硼化物
  • 批准号:
    1506860
  • 财政年份:
    2015
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant
SusChEM: High Throughput Screening of Anti-fouling and Anti-bacterial Coating Films
SusChEM:防污抗菌涂膜的高通量筛选
  • 批准号:
    1337065
  • 财政年份:
    2013
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant
Superhard Metals
超硬金属
  • 批准号:
    1106364
  • 财政年份:
    2011
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant
The Synthesis and Characterization of Ultra-Incompressible, Superhard Borides
超不可压缩、超硬硼化物的合成和表征
  • 批准号:
    0805357
  • 财政年份:
    2008
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant
NIRT: Engineering Conducting Polymer Nanofibers for Advanced Applications
NIRT:用于高级应用的工程导电聚合物纳米纤维
  • 批准号:
    0507294
  • 财政年份:
    2005
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant
Metathesis Routes to Ultra-Incompressible Borides, High Surface Area Nitrides and Intermetallics
超不可压缩硼化物、高表面积氮化物和金属间化合物的复分解路线
  • 批准号:
    0453121
  • 财政年份:
    2005
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant
Metathesis Routes to Nitrides and Nanotubes
氮化物和纳米管的复分解途径
  • 批准号:
    0073581
  • 财政年份:
    2000
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant
Solid-State Metathesis Reactions Under Pressure
压力下的固态复分解反应
  • 批准号:
    9704964
  • 财政年份:
    1997
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant
Rapid Solid-State Synthesis of Materials
材料的快速固态合成
  • 批准号:
    9315914
  • 财政年份:
    1994
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant

相似国自然基金

浙江省加强科研作风学风建设体系研究
  • 批准号:
    2025C25064
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
浙江省加强青年科技人才引进、培养和使用的对策研究
  • 批准号:
    2025C25007
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
全关节镜下斜方肌下束转位+肌腱桥接加强修补治疗后上型巨大肩袖损伤的临床研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
加强上海市医疗卫生机构行风管理的策略研究
  • 批准号:
    2025HP30
  • 批准年份:
    2025
  • 资助金额:
    5.0 万元
  • 项目类别:
    省市级项目
加强剂疫苗诱导单核细胞“训练免疫”的分子机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
伽马频率闪烁光经MHC-II加强视网膜小胶质细胞对AMD老化的治疗作用研究
  • 批准号:
    2025JJ90253
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
高暴露双反应活性中心加强四氧化三铁类芬顿修复多环芳烃污染水 体的行为机理研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
加强高校推进负责任科学研究的制度建设 与对策研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
不同U、Th浓度的磷灰石中辐射损伤加强裂变径迹退火行为的研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    青年科学基金项目
人多能干细胞来源心外膜细胞加强心肌组织血管化和修复梗死心肌的作用和机 制研究
  • 批准号:
    24ZR1459100
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

ART: Translational Research Ambassadors Network for Strengthening Institutional Capacity and Fostering a Responsive and Open Mindset (TRANSFORM)
ART:加强机构能力和培养积极响应和开放心态的转化研究大使网络(TRANSFORM)
  • 批准号:
    2331208
  • 财政年份:
    2024
  • 资助金额:
    $ 64万
  • 项目类别:
    Cooperative Agreement
CC* Planning: Strengthening Central Michigan University's Cyberinfrastructure
CC* 规划:加强中央密歇根大学的网络基础设施
  • 批准号:
    2345749
  • 财政年份:
    2024
  • 资助金额:
    $ 64万
  • 项目类别:
    Standard Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
  • 批准号:
    2335235
  • 财政年份:
    2024
  • 资助金额:
    $ 64万
  • 项目类别:
    Standard Grant
Seismic Performance Evaluation and Sustainable Strengthening of Unreinforced Masonry Infill Walls
无筋砌体填充墙的抗震性能评价与可持续加固
  • 批准号:
    24K17338
  • 财政年份:
    2024
  • 资助金额:
    $ 64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Strengthening the Mathematics and Science Teacher Pathways in the Post-Pandemic Environment
加强大流行后环境中的数学和科学教师的途径
  • 批准号:
    2344918
  • 财政年份:
    2024
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant
Applying a Program Science approach for strengthening partnerships and advancing embedded research to optimize public health programming for HIV and sexually transmitted and blood-borne infections among criminalized populations in the Global South
应用计划科学方法来加强伙伴关系并推进嵌入式研究,以优化南半球犯罪人群中针对艾滋病毒、性传播和血源性感染的公共卫生规划
  • 批准号:
    502554
  • 财政年份:
    2024
  • 资助金额:
    $ 64万
  • 项目类别:
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
  • 批准号:
    498310
  • 财政年份:
    2024
  • 资助金额:
    $ 64万
  • 项目类别:
    Operating Grants
Strengthening Evidence-Based Policy Practice for Sustainable Food Systems under the EU-AU Partnership
在欧盟-非盟伙伴关系下加强可持续粮食系统的循证政策实践
  • 批准号:
    10101252
  • 财政年份:
    2024
  • 资助金额:
    $ 64万
  • 项目类别:
    EU-Funded
Collaborative Research: Improving Upper Division Physics Education and Strengthening Student Research Opportunities at 14 HSIs in California
合作研究:改善加州 14 所 HSI 的高年级物理教育并加强学生研究机会
  • 批准号:
    2345092
  • 财政年份:
    2024
  • 资助金额:
    $ 64万
  • 项目类别:
    Standard Grant
Ravens Strengthening STEM Education Pathways
乌鸦加强 STEM 教育途径
  • 批准号:
    2345150
  • 财政年份:
    2024
  • 资助金额:
    $ 64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了